Allocation Games

Lloyd S. Shapley Professor Emeritus, UCLA

Game Theory

The Deferred Acceptance Algorithm for Stabilized Dating

Boys' Preferences					
Adam	Bob	Charlie	Don		
Mary	Jane	Mary	Mary		
Jane	Mary	Kate	Kate		
Kate	Kate	Jane	Jane		

Girls' Preferences				
Mary	Jane	Kate		
Adam	Adam	Don		
Bob	Charlie	Charlie		
Charlie	Don	Bob		
Don	Bob	Adam		

	Day 1	Day 2	Day 3	Day 4	Day 5
Mary	Adam (Charlie & Don rejected)	Adam (no new proposal)	Adam (no new proposal)	Adam (Bob rejected)	Adam (no new proposal)
Kate	No proposal	Don (Charlie rejected)	Don (no new proposal)	Don (no new proposal)	Don (Bob rejected)
Jane	Bob	Bob (no new proposal)	Charlie (Bob rejected)	Charlie (no new proposal)	Charlie (no new proposal)

The process ends when all unattached boys have been rejected by all the girls.

The Deferred Acceptance Algorithm for Stabilized Dating

There are mathematical proofs of these theorems:

•The algorithm ends in a finite number of steps, resulting in a stable solution.

•The solution is the best possible outcome for the group proposing (that is, the boys). If the girls proposed, the result would be the best for the girls, but probably not the same result.

•This works for any different number of boys and girls.