Nobel Lecture

James E. Rothman Yale University

"The Principle of Membrane Fusion in the Cell"

Karolinska Institutet Stockholm December 7, 2013

Stockholm 10:32 am October 7, 2013

Dr. Göran Hansson

Manhattan 4:32 am October 7, 2013

Dr. James Rothman

Stockholm 10:32 am October 7, 2013

Dr. Göran Hansson

The Founder of Modern Cell Biology

George Palade (1912-2008) Yale University, Nobel Prize (1974)

How is the right cargo delivered to the right place at the right time?

from The Nobel Lecture 1974; G.E. Palade

The physics of membrane fusion is simple

But how do cells harness the physics to deliver the right cargo to the right place at the right time?

1950 – 1965 When I Grew up - The Era of Physics

How Does a Physicist Approach the World (including the Biological World)?

 Seeks universal laws to explain all related processes on a common basis

 Formulates the simplest hypothesis to explain the facts The simplest hypothesis: Intrinsic chemical specificity governs transport, not intracellular anatomy

Anatomy dictates specificity

Specificity dictates anatomy

From Cold Spring Harbor Symposia Volume XLVI (1982)

The remarkable prediction of the simplest hypothesis:

Vesicle traffic – which itself generates the anatomy in the cell can nonetheless take place accurately in cell-free extracts

Eduard Buchner (1860-1917) The Founder of Modern Biochemistry

Nobel Prize (1907) "for his discovery of cell-free fermentation" dispelling vitalism, firmly rooting biology in chemistry

"We are seeing cells more and more clearly as chemical factories, where the various products are manufactured in separate workshops, the enzymes act[ing] as the overseers" - Nobel Lecture (1907)

The right environment ...

Arthur Kornberg (1918- 2007) Stanford University, Nobel Prize (1959) *The Master of Enzymology in his time*

The right postdoctoral fellow

"More Dounce Per Ounce"

Erik Fries circa 1980

And finally, we discovered the method that worked!

First Successful Reconstitution

Dissection of Cell-Free Vesicle Transport With EM and Inhibitors (with L. Orci)

Incubation	[³ H] GlcNAc Incorporated into VSV-G Protein
Complete	3500 cpm
- ATP	50
- Cytosol	75
- Golgi membranes	95
+ GTPγS (10 μM)	420 Transport
NEM-membranes	225 Accumulate

Rothman, Orci, and co-workers 1986-1989

GTP γ S Inhibition Accumulates Transport Vesicles Encased in Protein Coat (COPI)

→ Purification of
vesicles, discovery
of the coat protein,
and the budding
mechanism

Malhotra, Orci & Rothman Cell, 1989

Discovery of Coatomer (COPI) and the General GTP-Switch Mechanism for Budding and Uncoating of Vesicles for Fusion

Rothman, Orci and coworkers (1991-1993)

Dissection of Cell-Free Vesicle Transport With EM and Inhibitors (with L. Orci)

Incubation	[³ H] GlcNAc Incorporated into VSV-G Protein
Complete	3500 cpm
- ATP	50
- Cytosol	75
- Golgi membranes	95
+ GTPγS (10 μM)	420 Transport
NEM-membranes	225 Accumulate

Rothman, Orci, and co-workers 1986-1989

NEM Inhibition Accumulates Uncoated Vesicles That Fail to Fuse

→ Purification of
"<u>NSF</u>" (<u>NEM-</u>
<u>Sensitive Factor</u>)
Needed for
Vesicle Fusion

Block, Wieland & Rothman, 1988

Malhotra, Orci & Rothman, 1988

Setting the stage for the second major discovery – the SNARE complex

Purification of SNAP Receptor (SNARE) Proteins

Thomas Söllner circa 1993

Söllner et al. Nature, 1993

The SNARE Complex

Docking and Fusion Particle

Söllner et al. Nature, 1993

The SNARE Hypothesis for Delivery at the Right Place and the Right Time

Söllner et al, Nature, 1993

SNAREs – The Core Fusion Machinery

SNAREs Encode Compartmental Specificity

McNew et. al, 2000

Fusion is thermodynamically coupled to folding of SNARE proteins between membranes

cis-SNARE complexes Force vanishes only when bilayers fuse

•SNARE-driven fusion is rapid (10- 100 msec after docking) and spontaneous between vesicle and bilayer

•SNARE proteins fold-up into a highly stable four helix bundle during fusion

- •A single SNAREpin sufficient for bilayer fusion; multiple pins required for optimal fusion.
- •Energy released by SNARE protein folding is used to do work on the lipid bilayer

•SNAREs are then recycled by the NSF ATPase which unfolds them

All-or-none zippering of the membraneproximal domain (CTD) of SNAREpins

from Zhang, Rothman et al, Science 2012

Quantal Release of Neurotransmitters by Fusion of Synaptic Vesicles at Nerve Terminals Triggered by Calcium Ion Entry in < 1 msec – How?

Fixed at rest

Fixed 5ms after stimulation

Complexin trans-clamps half-zippered SNAREpins to synchronize release

Reinsich, Rothman and colleagues, NSMB 2011

Some Current Directions: Rings and Vesicles – From Physical Chemistry to Physiology

From Dye Chemistry to Enzymology to Cell Biology

"We must never let ourselves fall into thinking "ignorabimus" ("We shall never know"), but must have every confidence that the day will dawn when even those processes of life which are still a puzzle today will cease to be inaccessible to us natural scientists." - E. Buchner

from the Nobel Lecture December 11, 1907

Thanks to the many dozens of contributors to our understanding of the tiny bubbles in the cell that enable all thought and action

Kunié Sugiura

Nobel Lecture

James E. Rothman Yale University

"The Principle of Membrane Fusion in the Cell"

Karolinska Institutet Stockholm December 7, 2013