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It is needless to say that I feel it a great honor and privilege to have been se-
lected for the 2003 Nobel prize in physics for my theoretical work on super-
fluid 3He; I am particularly pleased to be sharing the award with Professors
Ginzburg and Abrikosov, whom I have always looked up to as giants of the
closely related fleld of superconductivity. The story of how, in roughly the
twelve-month period July 1972–July 1973, we came to a theoretical under-
standing of the experimental data on what we now know as superfluid 3He is
a sort of complex detective tale, involving many actors besides me; for reasons
of time I will concentrate in this lecture on my own involvement, and will
have to omit several important developments in which I had no direct role.

The element helium comes in two (stable) forms, 4He and 3He; at low tem-
peratures and pressures both form liquids rather than solids. The liquid
phase of the common isotope, 4He, was realized nearly a century ago, and
since 1938 has been known to show, at temperatures below about 2K, the
property of superfluidity – the ability to flow through the narrowest capil-
laries without apparent friction. By contrast, the liquid form of the rare iso-
tope, 3He, has been available only since about 1950, when enough of it was
produced by the decay of the tritium manufactured in nuclear reactors.
However, it was soon recognized that liquid 3He is in many ways similar to a
system which has been known for much longer, namely the electrons in 
metals. Although there is one obvious difference (the electrons in metals are
electrically charged whereas the 3He atom is electrically neutral), both sys-
tems are dense systems of particles which have spin 1/2 and are therefore ex-
pected to obey Fermi-Dirac statistics. (By contrast, the atoms of 4He have spin
zero and should therefore obey Bose-Einstein statistics). If we consider a non-
interacting gas of such particles in thermal equilibrium at a temperature T ��
TF = �F /kB (where �F is the “Fermi energy”, determined by the mass and den-
sity), then all states lying well below �F in energy are occupied by a single par-
ticle and all those well above �F are empty; rearrangement of the particles can
take place only in an energy “shell” of width ~ kBT around �F , and all the
thermal, transport and response properties are thus determined by the prop-
erties of the states in this shell. In a famous 1956 paper L. D. Landau [1]
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showed that under appropriate conditions this picture remains qualitatively
valid even in the presence of strong inter-particle interactions; the system is
then known as a “degenerate Fermi liquid”. Experiments on liquid 3He in the
fifties and early sixties showed that this system indeed appeared to be behav-
ing as a degenerate Fermi liquid below ~100 mK, down to the lowest tempe-
ratures then attainable (around 3mK).

Now, it has been known for nearly a century that the electrons in metals,
which have a Fermi temperature of ~ 104–105K, may sometimes, at tempera-
tures <~ 20K, enter the so-called superconducting state, in which they can flow
without apparent resistance; this is just the analog, for a charged system, of
the superfluidity of liquid 4He. Since for liquid 3He the Fermi temperature is
only a few K, it would have been reasonable to speculate that the atoms might
undergo a similar transition at temperatures of the order of mK; since the
atoms are electronically neutral, the result would be not superconductivity
but rather superfluidity, as in 4He. However, in the absence of a microscopic
theory of superconductivity no quantitative approach to this question sug-
gested itself.

Remarkable progress in the phenomenological description of supercon-
ductivity was made in the early fifties (as recognized in the awards to my co-
laureates), in particular by introducing the concept of a “macroscopic wave
function” or order parameter. The microscopic underpinning [2] of this
concept was provided by my late colleague John Bardeen and his collabora-
tors Leon Cooper and Bob Schrieffer in 1957, in what is now universally rec-
ognized as the correct microscopic theory of superconductivity (at least as it
was known at that time), the “BCS” theory. They postulated that in the su-
perconducting state the electrons within a “shell” of width ~ kBTc around the
Fermi energy (where Tc is the temperature of the superconducting transi-
tion) tend to form “Cooper pairs”, a sort of giant “di-electronic molecule”,
whose radius is huge compared to the average distance between electrons (so
that between any two electrons forming a Cooper pair there are billions of
other electrons, each forming their own pairs). A very essential feature of the
BCS theory of superconductivity is that the Cooper pairs, once formed, must
all behave in exactly the same way, that is, they must have exactly the same
wave function, as regards both the center of mass and the relative coordinate.
In fact, the “macroscopic wave function” of Ginzburg and Landau turns out
to be nothing but the common center-of-mass wave function of all the pairs.
This wave function can have a very nontrivial spatial variation, and it is this
variation which gives rise to the effects described by Professors Ginzburg and
Abrikosov.

By contrast, in BCS theory the “internal” (relative) wave function of the pairs
is rather boring; the two electrons have opposite spins, thus the pair has total
spin zero, and the relative orbital angular momentum is also zero, so that in
atomic notation the state of the “molecule” is 1S0, and all properties of the sys-
tem are completely isotropic; there are no “orientational” degrees of freedom.

When at the end of the fifties people started to extend the ideas of BCS to
liquid 3He, they soon realized an important difference between this system
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and the electrons in metals: The interaction potential between two He atoms
is strongly repulsive at short distances, and becomes attractive only for inter-
atomic separation r ~ ro ~ 3 Å; thus, the atoms forming a Cooper pair cannot
approach much more closely than this. Since they come from states close to
the Fermi surface, however, their relative momentum must be of the order of
pF � (2m�F )1/ 2 ~ 1 Å–1. This then means that their dimensionless relative an-
gular momentum l must be of order pF ro /� and thus must be nonzero (most
probably 1 or 2), in contrast to the case of metallic superconductors where as
we have seen the pairs have l = 0. (A more quantitative calculation bears out
the conclusion of this intuitive argument). The Fermi statistics then imply
that if l is even (so that the orbital state is symmetric under exchange of the
two particles) then the spin state must be a singlet (S = 0) as in the original
BCS case, while if l is odd the spin state must be a triplet (S = 1). It was then
not unreasonable to expect that in either case (provided l � 0) the orbital
properties might be anisotropic, and that in the case of spin triplet pairing
(odd l) the spin properties might also be so; however, as we shall see, this
question is less straightforward than it might seem.

In the early sixties there was a good deal of theoretical interest in the pos-
sible existence and properties of a Cooper = paired (hence presumably su-
perfluid) phase of liquid 3He; in the present context two developments in
particular are worthy of note. In a seminal 1961 paper [3], Anderson and
Morel made a systematic adaptation of the ideas of BCS to this system: that is,
they explicitly assumed (as had others) that in the l � 0 case, just as in the l =
0 one considered by BCS, all Cooper pairs form in exactly the same state, with
respect not only to their center-of-mass motion but also with respect to their
internal (relative) state. It is worth emphasizing that this assumption is not
trivial; indeed there was at least one nearly contemporary paper [4] which
made a quite different and perhaps prima facie more attractive assumption,
namely that (in the l = 2 case) all the five Zeeman substates are equally popu-
lated, in such a way as to give a state of the system whose physical properties
are totally isotropic.1 By contrast, Anderson and Morel showed that with their
assumption the physical properties would in general be anisotropic both in
orbital and, in the odd-l (spin triplet) case, spin space. They studied in detail
two cases: that of pairing in a relative d-state (l = 2), where they worked out
various physical properties in considerable detail, and more briefly that of a p-
state (l = 1). In the latter case they chose a particular state, namely one in
which pairs form only in the Sz = +1(↑↑) and Sz = –1(↓↓) states (a so-called
“equal-spin-pairing” (ESP) state), and furthermore these states are associated
with the same orbital wave function, which intuitively corresponds to the pairs
having an orbital angular momentum � along a direction conventionally de-
noted by the unit vector l̂~; this state has subsequently, for reasons we shall see,
acquired the name of the “Anderson-Brinkman-Morel” (ABM) state. As far as
I know, there was no particular reason at the time to choose this state rather
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than, for example, the state, which within the generalized BCS theory is de-
generate with ABM, in which the Sz = +1 and Sz = –1 pairs have opposite an-
gular momenta (“axial” state); so that the choice they actually made was
serendipitous.

A second very important advance was made independently by Vdovin [9]
in the former Soviet Union and Balian and Werthamer [10] (BW) in theWest;
they observed that in the odd-l case it is possible to form pairs simultaneous-
ly in all three Zeeman substates in such a way that the pair wave function is a
superposition, i.e., schematically of the form (where r denotes the relative co-
ordinate)

It should be emphasized that all the Cooper pairs still occupy the single su-
perposition(1) (we do not have one-third of the pairs occupying each
Zeeman substate independently!). The “ESP” states considered in earlier
work such as that of Anderson and Morel are special cases of (1) with F↑↓(r)
� 0; in particular, the ABM state has (up to a phase) F↑↑(r) = F↓↓(r). In the
specific case l = 1, Vdovin and BW showed that it is possible to choose F↑↑(r)
to correspond to (apparent) angular momentum Lz = –1 and F↓↓ and F↑↓ sim-
ilarly to correspond to Lz = +1 and Lz = 0 respectively; in this way they con-
structed a state with L = S = 1 but J � | L+S | = 0, i.e., in atomic notation a 3P0

state. By the Wigner-Eckart theorem such a state should be isotropic in all its
properties, whether involving orbital motion, spin or their combination; in
particular, the spin susceptibility should be isotropic and equal to 2/3 of the
normal-state value (reflecting the fact that a third of the spin state is Sz = 0
with respect to any axis). Vdovin and BW showed that within the generalized
BCS calculation which they used this state (conventionally known as the BW
state) should be more stable than any l = 1 ESP state.

As a result of these and other considerations, the general expectation in
the theoretical community by around 1964 was that (a) liquid 3He might en-
ter a Cooper-paired state, which would then display inter alia the property of
superfluidity, at a temperature which was difficult to predict, and (b) that the
symmetry of such a state was most likely to be either l = 2, S = 0 or the BW
(3P0) state; in either case the spin susceptibility should be isotropic and re-
duced from its normal-state value (to zero in the l = 2 case, by a factor of 1/3
in the BW case).

It was at this point that I became actively interested in the possible super-
fluid phase of 3He. I had done a little work on normal 3He in my D. Phil. the-
sis (using Landau Fermi-liquid theory which at that time was still something
of a novelty in the West), and had subsequently gone to work as a postdoc
with David Pines at the University of Illinois at Urbana-Champaign. One day,
after I had been there for about a month, John Bardeen and Leo Kadanoff
came into my office and said “Look, John Wheatley down in the basement is
doing experiments on the spin diffusion coefficient of liquid 3He, and is get-
ting into the temperature regime where people think the superfluid transi-
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tion might occur. Why don’t you try to work out how this would be reflected
in the spin diffusion behavior?” I started this calculation but never finished it;
in retrospect this was probably just as well, since we now know that because of
the anomalous NMR behavior of superfluid 3He (on which much more be-
low) the spin diffusion is an extraordinarily complicated problem, and it is
unlikely in the extreme that I would have got it right in the absence of expe-
rimental clues.

The reason I never finished the spin diffusion calculation was that I got
side-tracked on to a problem that struck me as much more interesting, name-
ly how to combine the ideas of BCS on pairing in a weakly interacting Fermi
system with Landau’s “Fermi-liquid” theory of the normal state of 3He. After
some vicissitudes (see ref. [11]) I was able to reformulate the Landau theory
in terms of a set of “molecular fields”, a form in which it was then almost triv-
ial to apply it to the hypothetical superfluid phase as well as to the normal
one. I was able to show (for the l = 0 case) that while the spin susceptibility
and normal density of a degenerate superfluid Fermi liquid, like that of a
weakly interacting superfluid Fermi gas, both fall to zero in the limit T → 0,
their temperature dependence is in general quite different form that of the
latter (and from one another)2. In the case of the spin susceptibility, I also ap-
plied the “molecular-field” idea to the BW state, and showed inter alia that in
3He Fermi-liquid effects should depress the T = 0 susceptibility (relative to the
normal-state value) from the “weakly interacting” value of 2/3 to about 1/3.
In subsequent work I generalized Landau’s calculation of the low-frequency
collective excitations of a Fermi liquid, including zero sound, to the super-
fluid phase.

During the two years following my postdoctoral year at UIUC, I wandered
about quite a bit, both geographically3 and intellectually. Among other prob-
lems in the low-temperature area which I considered during this period was
one concerning the possible collective excitations of a “two-band” supercon-
ductor, that is, a superconducting metal in which the Fermi surface interacts
two different bands. I think I had probably read, and been influenced by, P.
W. Anderson’s elegant formulation of the theory of superfluidity in 4He in
terms of conjugate “number” and “phase” variables; at any rate, it occurred to
me that a two-band superconductor should show a sort of “internal Josephson
effect” corresponding to fluctuations of the relative number of electrons in
the two bands and of the relative phase of the Cooper pairs in them, and in a
paper published in Progress of Theoretical Physics [14] I discussed the ap-
propriate microscopic definitions of the corresponding operators ∆N, ∆�
and their commutation relations, namely, [∆N,∆�] = i. At the time this work
sank more or less without trace, in part because by the time it was published
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it had already become clear that the experimental evidence for the existence
of two-band superconductors in nature was dubious; however, it was to play a
crucial role in the subsequent history.4

In the fall of 1967 I took up a lectureship at the University of Sussex, and
for the next few years, in the intervals allowed by my teaching duties, I con-
tinued to work on various problems in low-temperature physics, including 
liquid 3He. However, I found myself becoming increasingly bored with 
this area of research, and indeed with much of conventional physics; at the
same time, thanks in part to a remarkable series of lectures delivered by my
colleague Brian Easlea, I got more and more intrigued by the conceptual
foundations of quantum mechanics, and by the summer of 1972 had made a
firm decision that I would abandon the sort of physics that gets published in
Phys. Rev. B and devote myself full-time to foundational studies. (Fortunately,
in those days even lectureship positions in British universities carried tenure,
so that it was possible to make such a switch without drastically affecting one’s
career prospects!)

In July 1972 I was on a climbing holiday in Scotland when I heard that Bob
Richardson, whom I knew at a distance as an experimentalist at Cornell work-
ing on, among other things, liquid and solid 3He, would be passing through
Sussex for a day and would like to talk to me. I was certainly keen to meet Bob
(I had had some correspondence with him concerning an effect in normal
liquid 3He on which he had done the experiment and I the theory), but I was
enjoying my holiday, and I remember debating with myself whether to go
home a day early to meet him or not. In the end I think the weather made the
decision for me: it rained on the morning in question, I went home early and
spent several hours talking to Bob. What he told me that day changed my
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Figure 1: The phase diagram of liquid 3He at melting pressure below 3mK.



whole research career and led, thirty years later, to my presence in Stockholm
today.

In earlier work the Cornell group (at that time consisting of Doug Oshe-
roff, Dave Lee and Bob himself) had studied the pressurization curve (that is,
the graph of pressure versus time) of a mixture of liquid and solid 3He, and
had observed two small but reproducible anomalies, which with some hind-
sight indicate phase transitions in the liquid: a second-order transition at TA ~
2.6 mK and a first-order one at about TB ~ 2 mK (see figure 1). Using the
nomenclature which later became standard, the liquid phase which exists be-
tween 2 and 2.6 mK is the A phase and that below 2 mK is the B phase: thus
the normal (N) – A transition is second order and the A–B one first order.
The group had published their experimental results [16] in early 1972, but
had erroneously interpreted the phase transitions as occurring in the solid
rather than the liquid; I had vaguely known about this work but had not been
particularly excited by it, in part because there was a general expectation that
some kind of magnetic-ordering transition would occur in solid 3He in the
mK regime5, and it did not seem that the resulting phase was likely to be par-
ticularly novel in its properties.

What Bob told me, however, was that the group (by now augmented by
Willy Gully) had gone on to do nuclear magnetic resonance (NMR) experi-
ments [18] on the solid-liquid mixture in the temperature regime in which
the thermodynamic anomalies occurred. These were straightforward c.w. ab-
sorption measurements, with the rf field polarized perpendicular to the ex-
ternal dc field Hext. The first, qualitative conclusion, which was drawn from an
analysis of the spatial profile of the NMR, absorption, was quite unambigu-
ously that the phase transitions were occurring in the liquid component of
the mixture, not the solid. Now, what an NMR experiment in the above stan-
dard geometry measures is the rf power absorption as a function of the fre-
quency � of the rf field; provided a linear approximation is valid, from this
one can directly infer the imaginary part of the (transverse) spin density re-
sponse function of the system, �(�), and application of a Kramers-Kronig re-
lation to the latter (c.f. below) then allows one to infer the dc susceptibility �0.

In the normal (N) phase the absorption profile has a very sharp resonance
at the (temperature-independent) Larmor frequency �res = Hext, where  is
the gyromagnetic ratio of the free 3He atom, and the dc susceptibility �0 is 
also temperature-independent and of the general order of magnitude of that
predicted for a free Fermi gas with the mass and density of liquid 3He. These
results were already well established and not considered at all surprising: the
discrepancy between the experimental and free-gas values of �0 is entirely
consistent with the interpretation of the N phase as a degenerate Landau
Fermi liquid, and the fact that the observed resonance frequency is (within
experimental error) the free-atom value tells us that any effective magnetic
field, other than those of “exchange” origin, arising from the system itself are
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negligible. (The “exchange” fields, which are in part responsible for the
renormalization of the dc susceptibility, are automatically parallel to the total
spin of the system; thus they cannot exert a torque on the latter and thus can-
not shift the resonance frequency, which is determined by the external field
alone: cf. below). This is exactly what is expected, since the only possible ori-
gin of such a non-exchange field is the tiny dipole interaction (on which
more below).

By contrast, the NMR behavior in the A and B phases is highly unconven-
tional: see figure 2. As the temperature falls below the temperature TA of the
second-order transition, the resonance absorption peak remains very sharp
but shifts upwards in frequency. The shift is not proportional to the external
field Hext but rather obeys a “Pythagorean” law:

with �2
o having the approximate temperature-dependence

When the system undergoes the first-order phase transition into the B phase,
the resonance frequency drops back discontinuously to the Larmor (N-state)
value �res = Hext � �L. Meanwhile the dc susceptibility, obtained as described
from the absorption data using a Kramers-Kronig relation, remains constant
in the A phase at its N–state value;6 however it drops discontinuously at the
A–B transition by a factor of ~ 50%, and thereafter decreases further with
temperature in the B phase.

The behavior of the susceptibility struck me as surprising but not extraor-
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Figure 2: The behavior of the NMR resonance frequency �res in liquid 3He below 3mK. (The
qualitative behavior of the static susceptibility � is also noted.).
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6 Subsequent work [19] has shown that there is in fact a very small jump (a fraction of a percent)
in �o at the N–A transition.



dinary. In particular, it could be fitted into the expected Cooper-pairing sce-
nario if we make the assumption that the A phase is of the ESP type (since no
Sz = 0 pairs are formed, the susceptibility should indeed be unreduced from
the N–state value), while the B phase is either a spin singlet (even–l) state or
the BW state. Of course, such an assumption leaves us with the question why
then should there be two different Cooper-paired phases at all, and even
more urgently, how any kind of ESP phase can be stable with respect to the
BW phase, in clear contradiction to the predictions of the generalized BCS
theory.

What struck me as truly extraordinary about the NMR data, however, was
the shift of the resonance frequency in the A phase. To see why, let’s try mak-
ing the most obvious interpretation of the Pythagorean formula (2), namely
that the system somehow generates a magnetic field Ho(T) � �o(T)/ in a di-
rection perpendicular to the external one, so that the total field in which the
spin precesses is (H 2

ext + H 2
o (T))1/2 � �res/. As emphasized above, the origin

of such a field cannot be exchange effects, which although strong cannot give
rise to any extra precession. So where could it come from? The atomic elec-
trons in liquid He form inert closed shells, with excitation energies of the or-
der of 50 eV , so any contribution from them at temperatures in the mK range
should be utterly negligible. This leaves the nuclear magnetic dipole mo-
ments: each 3He nucleus can be thought of as a tiny magnet, with a magnetic
moment M = S parallel to its spin, and these magnets should then produce
a field just as a macroscopic bar magnet would. Moreover, just as in the case
of a bar magnet, the field is in general not parallel to the magnetic moment,
i.e. to the spin, and thus could in principle shift the resonance frequency.

So far, so good. However, the problem is the magnitude of the effect. To fit
the data to the above scenario, the field Ho(T) would have to be of the order
of 30 G at the A–B transition. Now even at the distance of closest approach of
two He atoms (ro ~ 2.5 Å) the maximum field exerted by a nuclear spin on its
neighbor is less than 1G, and even taking into account the long range (r–3)
behavior of the field it seems impossible to envisage a stacking arrangement
of the atoms which could give rise to the required value of Ho(T) (quite apart
from the fact that such a stacking would be expected both to cost a large
amount of energy and to produce dramatic effects on the dc susceptibility).

Indeed, my initial reaction to these result were that they were so extraordi-
nary that they might be the first evidence for a breakdown of some funda-
mental principle of quantum mechanics (such as the Pauli exclusion princi-
ple) under the very exotic conditions characterizing liquid 3He in the mK
regime. Given that, it seemed sensible to postpone my planned foray into the
conceptual foundation of quantum mechanics until I could be quite sure that
quantum mechanics was still actually working! So as soon as Bob had gone
home, I sat down (fortunately it was still the Sussex vacation for another few
weeks) to try to construct a formal proof that given the generally accepted
laws of quantum and statistical mechanics, the shift observed in the experi-
ments simply could not occur.
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Now, there are very few things that can be proved rigorously in condensed-
matter physics, and most of those refer to the linear-response behavior and
are obtained by the use of various sum rules. In the case of the Cornell NMR
data, it seemed prima facie plausible that the rf field was weak enough to jus-
tify a linear response approximation, so I asked myself what information
could be extracted from the known sum rules involving the operator which
couples to this field, namely the total x-component of nuclear spin Ŝx � �i �̂xi.
(The x-direction is arbitrarily chosen as that of the (linearly polarized) rf
field). If, as above, �(�) denotes the frequency-dependent rf susceptibility,
then there are two such well-known sum rules:

where �o denotes the dc susceptibility and Ĥ the total Hamiltonian of the sys-
tem in the absence of the rf field; the angular brackets denote the expecta-
tion value taken with respect to the unperturbed thermal equilibrium state,
i.e., with density matrix proportional to exp (– Ĥ/kBT). The first sum rule, (4),
is just a special case of the Kramers-Kronig relation, while the second, (5), is
the analog of the well-known f-sum rule of atomic physics and is obtained
straightforwardly by writing down the second-order perturbation theory ex-
pression for �(�) and evaluating the double commutator on the right-hand
side explicitly. (c.f. e.g., ref. [20], section 2.2, for the corresponding proce-
dure in the parallel case of the density sum rule).

The two sum rules (4) and (5) are quite generally valid. Now let us assume
that the experimentally observed rf absorption is indeed a measure of the
imaginary part of the linear ac susceptibility �(�), and use the fact that the
former is observed (in all three phases N, A, B) to be proportional to a delta-
function (�(� – �res)), where however the resonance frequency �res is in gen-
eral a function of the phase and of temperature.7 Substituting this form of 
Im �(�) into eqns. (4–5), we immediately obtain an expression for �res:

The double commutator has a simple physical significance: Imagine that
we rotate the whole nuclear-spin system uniformly by a small angle �x around
the x–axis (axis of the rf field), keeping the orbital variables fixed. By using
the fact that the operator which generates such a rotation is exp (i Ŝx�x), and
that the quantity < [Ŝx, Ĥ ] > must be zero in thermal equilibrium, we find that

1
π

∫ ∞

o

Imχ(ω)
ω

dw = χo.
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(4)

(5)

(6)

1
π

∫ ∞

o

ωIm >oχ(ω)dω = − < [Ŝx[Ŝx, Ĥ]]

7 There is of course an implicit assumption here, namely that there are no contributions to the
absorption which are too diffuse to be picked up in the experiments.

ω2
res = −χ−1

o 〈[Ŝx, [Ŝx, Ĥ]]〉o

χ(ω)
dω



the double commutator is nothing but the negative of ∂2 < Ĥ >/∂�2
x , the sec-

ond derivative of the mean energy under such a rotation.
Suppose, first, that apart from the Zeeman energy in the external field,

µn�i SziH, the only spin-dependent energies in the problem are spin-conserv-
ing, i.e., they depend only on the magnitude of the total spin S, not on its di-
rection; this is the case, in particular, for energies of “exchange” origin. Such
terms clearly cannot contribute to the double commutator, which then turns
out to be simply equal to 2SzHext � 2�oH 2

ext ; thus in this case the resonance is
uniquely constrained to lie exactly at the Larmor frequency �L � Hext. Thus,
as already stated, any shift of �res away from the Larmor value, such as occurs
in the A phase, is unambiguous evidence for the operation of some spin-non-
conserving energy. In liquid 3He, as we have already seen, the only known such
energy is the nuclear dipole-dipole interaction, which has the standard form

Evidently this expression is not invariant under rotation of the spins alone,
without simultaneous rotation of the orbital coordinates, so in principle it can
contribute to the double commutator in eqn. (6). In fact, this equation be-
comes explicitly:

Comparing this expression with the experimental result, eqns. (2) and (3),
we find that in the A phase we must have

while in the N and B phases the quantity ∂2�HD�/∂�2
x must be zero within the

accuracy of the experiment.
Now, it is intuitively rather clear that the quantity ∂2�HD�/∂�2

x cannot be
larger in order of magnitude than �HD� itself. Thus, the A-phase shift in the
resonance frequency can be explained – but only if the expectation value of
the nuclear dipole energy in that phase is of the order of magnitude (9). But
how can this be? The maximum possible value (call it gD) of the dipolar ener-
gy of a single pair of spins i, j, obtained by setting rij in (7) equal to the dis-
tance of closest approach (~ 2.5 Å) is only about 10–7K. Now it is true that if
one multiplies gD by the average density n (which should be a crude measure
of the number of pairs which closely approach one another) one gets a quan-
tity of the order of 1 erg/cm3, more than enough to account for the value (9);
in principle, there is enough dipole energy available! The problem, however,
lies with the thermal disorder: Given that two 3He nuclei have an orbital sep-
aration rij , the energy advantage of a “right” spin orientation (spins parallel
to rij) over a “wrong” one (spins perpendicular to rij) is at most only ~ gD, so
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(7)

(8)

(9)

ĤD = µ2
n

∑
ij

(r̂−3
ij )

{
σ̂i · σ̂j − 3σ̂i · rijσ̂j · rij

r2
ij

}
(rij ≡| ri − rj |)

ω2
res = γ2H2

ext + χ−1
o ∂2〈HD〉/∂θ2

x

∂2〈HD〉(T )
∂θ2

x

= K(1 − T/TA) K ∼= 10−3ergs/cm3

3�̂i · ri j��̂j · ri j



even in a classical model the preference for “right” orientations over “wrong”
ones should only be a factor of order gD/kBT; this then gives an expectation
value of �HD� of order ng 2

D/kBT, which is too small to account for (9). Actually,
the situation is worse than this, since in a degenerate Fermi liquid such as 3He
the “polarizability” of the (pairs of) spins by the dipole interaction (as by an
external field) is governed not by the thermal energy kBT but by the much
larger Fermi energy kBTF , so that the resulting value of �HD � is only of order
ng 2

D/kBTF. An explicit calculation of �HD � in the Fermi-liquid model of the
normal phase confirms this estimate, showing that the associated contribu-
tion of the dipole forces to the right-hand side of eqn. (8) is too small for the
resulting shift to be seen experimentally, as is indeed the case.8

Where could this argument possibly go wrong? I worried over it day and
night for a couple of weeks, and then the solution suddenly hit me: it is an
idea which I called “spontaneously broken spin-orbit symmetry”, or SBSOS
for short. It is most easily explained by analogy with the more familiar case of
a magnetic system described by the (isotropic) Heisenberg Hamiltonian, the
explicit correspondence is given in Table I. The crucial point, in the magnet-
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TABLE I.  Analogy between SBSOS and Ferromagnetism
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Table 1. Analogy between 
SBSOS and Ferromagnetism.

8 Much more recently, a shift of the predicted order of magnitude in the N phase has in fact been
seen, [21], although it is not clear that its detailed properties agree with theoretical expectations.



ic case, is that in the paramagnetic phase the competition of the thermal en-
ergy kBT is with the single-spin Zeeman energy gZ; since for reasonable fields
we have gZ << kBT, the degree of polarization is small (~ gZ/kBT << 1) and the ex-
pectation value of the total Zeeman energy is ~ Ng 2

Z /kBT, i.e., second order in
gZ (N is the total number of spins). However, in the ferromagnetic phase, the
isotropic (Heisenberg) part of the Hamiltonian, Ĥo, while it cannot pick out
a direction in space, nevertheless forces all (or most of) the spins to lie in the
same direction. Now, instead of each spin having to choose individually to lie
parallel or antiparallel to the field (corresponding to energies differing by gZ)
we need to choose (crudely speaking) between all spins lying parallel or all ly-
ing antiparallel; the energy difference between these two configurations is
NgZ rather than gZ, and it is with this large energy that the thermal energy kBT
has to compete. Since typically NgZ >> kBT, the polarization is almost 100%,
and the resulting value of the total Zeeman energy is ~ NgZ, i.e., linear rather
than quadratic in gZ.

In a similar way, we may suppose that in the normal phase of liquid 3He the
different pairs of nuclear spins behave more or less independently; then, as
sketched above, it is the single-pair energy dipole, gD, which competes with
the thermal energy kBT, the degree of “polarization” is ~ gD/kBT << 1, and the
resulting expectation value �HD � is ~ Ng 2

D /kBT. Now however suppose that in
the A phase (on whose specific nature we do not at the moment speculate)
the effect of the spin-conserving terms in the energy (kinetic energy, van der
Waals potential energy etc.) is such that, while not favoring any particular
configuration of the nuclear spins relative to the orbital coordinates, it forces
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Figure 3: A comparison between ferromagnetism and SBSOS.



all pairs to have the same configuration. Then, crudely speaking, we are
forced to choose between a configuration in which all pairs have the “right”
configuration, and one in which they all have the “wrong” one. The corre-
sponding energy difference is now not gD but NgD, so that provided that NgD >>
kBT (or actually >> kBTF ), as is certainly the case in practice, the “degree of po-
larization” of the pairs is of the order of 1 and the resulting value of �HD � can
in principle be of order NgD, as required by the experimental value of the
constant K in eqn. (9).

It is worth emphasizing that the concept of SBSOS is in some ways more
subtle than the analogous one of the breaking of rotational symmetry in a fer-
romagnet. In particular, as illustrated in figure 3, it is entirely compatible with
the total “spin of the pairs” Spair and their relative orbital angular momentum
Lpair both having expectation value zero (although in general quantities like
�(L � S)pair� may be non-zero). Even in cases in which Spair is nonzero,9 this
need not automatically of itself imply that the total spin S of the system is
nonzero; Spair is a measure of the spin correlations of those pairs of atoms
which are close in space. It is this consideration, incidentally, which explains
the failure of the simple argument, above, which purports to show that the
nuclear dipole moments cannot possibly produce the required “Pythagorean”
field to explain the A-phase resonance shift: Consider the equation of motion
of the total spin of the system in the presence of the external field and the di-
pole interaction. This has the form

where � and � indicate Cartesian components of the spin values. Eqn. (10) is
a quantum-mechanical (operator) equation of motion, and we need to take
the expectation values of the quantities on the two sides:

The argument given above implicitly assumes that we can make the approxi-
mation �Si � H~i� 	
 �Si� � �H~i� in which case the maximum possible value of
any precessional frequency associated with the dipole forces is indeed of the
order of  times the maximum value of �H~i�, i.e., ~ 1G. In a state without SB-
SOS (and at temperatures such that kBT >> gD) the “mean-field” approxima-
tion (13) is very good; however, in the presence of SBSOS it fails dramatical-
ly, and in fact the second term on the RHS of eqn. (12) can have a substantial
value even when the total spin polarization S ��i Si is very small.
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9 e.g., the A1 phase (see e.g., ref. [22] section XIII).

dS
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≡ d
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H∼ ≡ H∼ext
+ H∼d

, Hdα ≡
∑

j

fαβ(rij)Sjβ
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d〈S〉
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Given, then, that the shift in the resonance frequency in the A phase of liq-
uid 3He shows unambiguously that this phase must possess the property of SB-
SOS, what kind of microscopic model could give rise to this property? As a
matter of fact there are several, including the crystalline antiferromagnetic
phase subsequently shown experimentally [17] to exist in solid 3He below ~
1mK. However, in the light of pre-existing theoretical speculations the most
obvious possibility is a spin triplet Cooper-paired phase (which must auto-
matically have l � 0). We already know, from the unchanged susceptibility,
that if it is indeed a Cooper-paired phase it must be of the ESP type, in which
only ↑↑ and ↓↓ pairs form. For such a state, the dipole forces favor an orbital
configuration in which the relative orbital separation of the correlated pairs is
in the z–direction rather than the xy–plane, and any rotation of the spins away
from their original orientation (such as is induced by an rf field) will cost en-
ergy as required by eqn. (7). In fact, I was able to estimate the quantity
∂2�HD�/∂�2

x, obtaining both the order of magnitude and the temperature-de-
pendence required by eqn. (9). This calculation was presented by my Sussex
colleague Mike Richards at the LT conference in Boulder, Colorado in
August 1972,10 and published [23] in Physical Review Letters later that year.11

By now the Sussex autumn term was under way, and I had little time over
the next few months to work actively on the new phases (though I did write a
longer paper [24] which explored the concept of SBSOS more thoroughly
than had been possible in the letter). The experimental data still posed two
very obvious problems. First, assuming that the A phase was indeed an ESP
Cooper-paired phase, why should such a phase ever be stable with respect to
a phase of the BW type in which all three Zeeman substates were populated?
(In my Letter I had proposed a couple of tentative and, in retrospect, highly
implausible explanations for this). Secondly, what about the mysterious B
phase? The most obvious explanation, and one certainly consistent with its re-
duced susceptibility, was that it was indeed the theoretically expected BW
phase, and most theorists apparently assumed so. However, at the end of my
Letter I had remarked that the absence of a frequency shift showed that the B
phase did not possess the property of SBSOS and hence could not be the BW
phase, which would be expected to show SBSOS. (I speculated that it was ei-
ther an even–l (spin singlet) BCS state or something of currently unknown
nature). As we shall see, the first part of this argument turned out to be spec-
tacularly wrong. Meanwhile, my SBSOS-based approach to the NMR data had
itself not gone unchallenged; an alternative scenario [25] emphasized the
anisotropy of the susceptibility in an ESP-type phase, something to which I
had given no particular attention. It became increasingly clear that to de-
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10 There was an amusing glitch because of my initial misreading of the experimental data, which
I have recounted in ref. (13) and will not repeat here.
11 It is interesting, historically, that this was to my knowledge the first calculation of any property
of a Fermi superfluid in which it turned out to be necessary to worry about the behavior of the
Cooper-pair wave function at distances of the order of the interatomic spacing.



velop a convincing theory of the NMR I needed to go well beyond the simple
sum-rule arguments of the Letter, and do a believable calculation of the full
microscopic dynamics.

In the early spring of 1973 the problem of the stability of the A phase (and
simultaneously of the correct identification of the B phase) was beautifully
solved in a seminal paper [26] by Anderson and Brinkman (AB). They took
up an idea concerning superfluid 3He which had been proposed prior to the
experimental discovery of the new phases, namely that the effective attraction
necessary to bind the Cooper pairs in 3He does not simply come from the at-
tractive part of the “bare” van der Waals potential, but has an important con-
tribution also from the exchange of virtual spin fluctuations (“paramagnons”,
as they had been christened). Crudely speaking, just as in the BCS theory of
superconductivity one electron polarizes the ionic lattice, and a second elec-
tron then feels the induced polarization and is thereby attracted to the first
one (or more accurately to where the first one was in the recent past), so in
liquid 3He, with its strong tendency towards ferromagnetism, the spin of one
3He atom would induce a parallel collective spin polarization of the liquid in
the vicinity, which would then attract a second atom of the same spin. As
pointed out in ref. [27], this mechanism favors pairing with parallel spins (S
= 1), hence an odd value of l, and correspondingly disfavors even–l (spin sing-
let) states; it thus goes some way to explaining why the l = 2 state which most
theoretical work had anticipated does not occur in real liquid 3He. Now, how-
ever, AB went further and pointed out a crucial difference between this “spin-
fluctuation exchange” mechanism and the “phonon-exchange” mechanism
believed to operate in metallic superconductors: in the latter case, the virtual
excitation exchanged is an excitation of a system (the ionic lattice) which is
different from the objects (the electrons) which are thereby attracted to one
another and thereby form Cooper pairs, so that its structure is very insensitive
to the onset of pairing in the electron system. By contrast, in the case of liquid
3He, the exchanged spin fluctuation is a collective excitation of precisely
these objects which are forming the pairs (the 3He atoms) and thus its struc-
ture, and hence the effective attraction itself, is in general modified by the on-
set of pairing. At first sight it is tempting to dismiss this effect as insignificant,
however, AB were able to do a quantitative calculation (later extended [28] in
collaboration with Serene) which showed that the effect can under certain
circumstances be comparable to the differences in BCS theory between the
energies of different pairing configurations. In fact they were able to show
that while over most of the P-T phase diagram the BW phase should be stable
just as in simple BCS theory, there is a comparatively small region of high
pressure and temperature where the spin-fluctuation ”feedback” effects ren-
der a particular ESP state stable. This conclusion precisely agrees with the ex-
perimental phase diagram (obtained soon thereafter by John Wheatley and
his group) [29], if the B phase is identified with the BW phase and the A
phase with the relevant ESP phase. Remarkably, the particular ESP phase
which is favored is none other than the one explicitly investigated by
Anderson and Morel in their 1961 paper, (which thus acquired the name of
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the Anderson-Brinkman-Morel (ABM) phase). This work constitutes a major
qualitative leap beyond the simple BCS theory, and was in my view a crucial
contribution to the solution of the puzzle of the new phases.

April 1973 was the spring vacation at Sussex, and at the invitation of Bob
Richardson I was able to spend the whole month as a visitor at the Laboratory
of Atomic and Solid State Physics at Cornell. This month was without doubt
the single most exciting month of my more than 40-year academic career: I
was alone, and was able to spend sixteen hours a day, seven days a week, think-
ing about the microscopic basis of the NMR data. I spent much of the time
commuting between the basement of Clark Hall, where the experiments were
ongoing, and the sixth-floor offices of the theory group, who were of course
equally excited about the problem and eager to exchange ideas about it.

The theory I came up with [30] during this month can actually be viewed
as a natural generalization of my long-forgotten work on the ”internal
Josephson effect” in a two-band superconductor. Consider an ESP triplet
state: the two spin configurations (↑↑ and ↓↓) are then exactly analogous to
the pairs formed, in the superconducting case, in the two bands, and the ana-
log of the number difference ∆N is simply Sz , the z-component of the total
(not the Cooper-pair!) spin of the system. What is the analog of the phase dif-
ference ∆� between the pairs in the two bands? If we consider for notational
simplicity an ABM type state, so that the orbital wave function factors out, the
spin state is of the form of a superposition:

so ∆� � arg(b/a). But for a spin-1 system, a change in the relative phase of the
Sz = 1 and Sz = -1 components of the wave function is just equivalent to a rota-
tion of the spin coordinates (or equivalently to the (inverted) rotation of the
spin itself) around the z-axis. Hence, up to a factor of 2, ∆� is just the angle �z

of such a rotation. By the same arguments as used in ref. [14], one would
then expect that Sz and �z satisfy the commutation relation

However, there is nothing special about the z-axis. One would therefore ex-
pect12 that if S denotes the total spin vector and the vector �� specifies the op-
eration of rotation through an angle |�| about the axis �̂ , then we should have
the generalized commutation relation, valid for an arbitrary pairing state,
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Ψpair ∼ a| ↑↑〉 + b| ↓↓〉 ≡ a|Sz = +1〉 + b|Sz ≡ −1〉 (14)

(15)

(16)

[Sz, θz] = i

[Sα, θβ] = iδαβ

12 The derivation of the dynamics in the original paper uses the standard d_ vector notation(see
e.g., ref. [22], section (XI. D.)) and is rigorous. How I use a somewhat less precise but hopefully
intuitive notation and argument.



Now comes the crunch: The commutation relations (16), while rigorous,
will lead us to a useful dynamics only if the effective Hamiltonian for the lat-
ter can be expressed in terms of S and �� alone. Is this possible? I argued that
it is, for the following reason: We know from experiment that the character-
istic frequency associated with the dipole forces13 (the quantity �0(T)) is small
compared to the other obvious characteristic frequencies in the problem,
namely the “gap frequency”∆(T)/ � and the (N-phase) quasiparticle relax-
ation rate �–1. Thus, during the NMR all the “microscopic” degrees of free-
dom (e.g., the distribution of normal quasiparticles, or the configuration of
the Cooper pairs apart from their overall spin orientation) should follow the
macroscopic degrees of freedom S and �� adiabatically, and one can make a
sort of “Born-Oppenheimer” approximation in which the effective Hamil-
tonian is simply the minimum value of the (free) energy for the given values
of those two variables.

Now the only energy, apart from the Zeeman term, which depends on the
overall rotation angle of the nuclear spin system is the dipolar energy Hd(�),
which can be calculated explicitly as a function of � for any given assumed
Cooper-pair configuration (e.g., the ABM phase).14 As to the S-dependent en-
ergy, it consists of the Zeeman energy plus a “polarization” energy which in a
degenerate Fermi liquid has contributions from kinetic-energy (Pauli-prin-
ciple) and “exchange” effects; in any event, for a given value of S the mini-
mum value of this energy is simply 1–2

2�0
–1S2 where �0 is the static spin suscep-

tibility (which is in general a function of temperature, etc.) Thus the total
effective Hamiltonian in the Born-Oppenheimer (adiabatic) approximation
takes the simple form

(where H is the total external magnetic field, that is in general the sum of the
dc field and the rf one). From eqns. (16) and (17) we immediately obtain the
equations of motion of S and � :

Note that in thermal equilibrium d��/dt is zero as it should be. Although
strictly speaking the quantities S, �� appearing in eqns. (18) are quantum me-
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(17)

(18a)

(18b)

13 In high fields the Larmor frequency may exceed �–1, but this does not matter since the relevant
motion is simply uniform rotation of the spin system.
14 It is implicitly assumed that the reference (equilibrium) state is the one which minimizes the
expectation value of HD.
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chanical operators, once one has got to them it is an excellent approxima-
tion, under all conditions realized to date in liquid 3He, to treat them semi-
classically, i.e., to take the expectation value of eqns. (11) and replace
�∂HD/∂��� by (∂/∂ ����)HD(����), thereafter treating �S� � S and ���� � �� as clas-
sical variables.15

The equations of motion (18) should be exact within the Born-Oppen-
heimer approximation; it is clear that they are conservative and thus cannot
account for the finite linewidths observed experimentally, but in 1973 I left
that question for future work.16 In principle they can be solved for any motion
of the spin system which respects this approximation, whether or not it is lin-
ear in the rf field. In the linear case, which was at the time the most urgent
for the interpretation of the existing experiments, it turns out that in the
standard “transverse” geometry the values of the resonance frequencies
(there may be more than one of them) are determined by the eigenvalues of
the tensor quantity,

Since the form of this tensor is characteristic of the particular pairing state
assumed, we see that the experimental NMR behavior is a “fingerprint” of the
pairing state. In particular, let us assume for definiteness l = 1 pairing and
consider the three most frequently discussed states. For the ABM state, the
form of the tensor Ω̂ is such that only a single resonance line is predicted in
the NMR absorption, with a frequency which is correctly given by eqn. (31) as
derived from the sum rules.17 For the “axial” state, by contrast, the linearized
versions of eqns. (18) predict two resonance lines, with a splitting which de-
creases rapidly with the dc external field and would have thus been invisible
in the experiments existing in April 1973, but should be easily visible at lower
fields. Although by this time it had already been shown [33],[26], that within
the framework of a generalized Ginzburg-Landau theory the axial phase is
never thermodynamically stable, the above observation suggested that it
would be desirable to confirm, by NMR “fingerprinting” at lower dc fields,
that the A phase shows no splitting of the resonance at any field, and such ex-
periments were rapidly initiated both at Cornell and by Doug Osheroff at Bell
Labs, to which he had by that time moved after completing his doctorate.

As regards the BW phase, the predictions made by the linearized versions
of eqns. (18) are very intriguing. It turns out that the determination of the
correct form (orientation) of the equilibrium state is quite delicate: The 3P0
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Ω2
ij ≡ ∂2〈HD〉/∂θi∂θj (19)

15 For a discussion of the NMR behavior under conditions where the semiclassical approximation
might fail, see ref. [31].
16 In fact, in later work with S. Takagi [32] I was able to generalize eqns. (18) so to produce an ac-
count of the dissipation.
17 Strictly speaking this is true provided we assume that the so-called d-vector of lies perpendicu-
lar to the direction of the rf field. (There is a subtlety connected with eqn. (4) which there is no
space to discuss here.)

� HD �



state originally considered by Vdovin and by BW does not minimize the nu-
clear dipole energy, and in fact to do this is necessary to rotate the spin coor-
dinates through an angle of cos–1(–1–4) = 104° relative to the orbital one.
However, in zero dc external field it is obvious from the isotropy of the 3P0

state that the axis ��̂ of this rotation is completely arbitrary. A finite external
field along the z-axis breaks this degeneracy by depopulating, very slightly,
the Sz = 0 Zeeman component of the pair state relative to the Sz = �1 compo-
nents, and it turns out that this means that it is energetically advantageous to
choose ��̂ to be along the (positive or negative) z-axis. The relevant energy,
while it thus determines the equilibrium state, is sufficiently small that, at
least at first sight, it does not have to be taken into account explicitly in the
dynamics, which can thus be calculated by assuming a “pseudo-isotropic”
state, that is, one obtained from the (truly isotropic) 3P0 state by rotating the
spins relative to the orbital coordinates through 104° around the z-axis. Now
the structure of the tensor Ω̂ ij in (eqn. (19) for this state is rather striking: A
small rotation of the nuclear spin system away from the equilibrium configu-
ration around any axis in the xy-plane corresponds, up to the relevant order,
simply to a change in the axis of rotation while keeping the angle fixed, and
therefore brings into play only the very small energy which stabilizes Ω̂ in the
z-direction; at first sight, at least, it is consistent to neglect this,18 and the
transverse resonance therefore remains at the Larmor value as in the normal
phase. On the other hand a rotation around the z-axis involves a change of
the angle of the spin-orbit rotation away from the equilibrium value of 104°,
and therefore should bring into play a dipole energy of the same order of
magnitude as seen in the A-phase transverse resonance.

But how to see this effect? The answer is to look for a “longitudinal” reso-
nance, that is, a finite-frequency resonance in the absorption spectrum of an
rf field polarized parallel rather than perpendicular to the dc field. (In the
normal phase, as in any phase lacking SBSOS, this absorption spectrum is
simply a diffusive peak centered on zero frequency). The presence of such a
resonance, at a frequency which could be estimated with some confidence on
the basis of the “calibration” of the dipole energy from the A-phase shift,
should when coupled with the absence of a transverse shift identify the B
phase almost uniquely as the BW state. (A similar longitudinal resonance is
predicted to occur in both the ABM and axial phases).

Although initially neither the Anderson-Brinkman theory of the stability of
the ABM phase nor the spin dynamics which I had developed during my stay
at Cornell found universal acceptance (cf. ref. [11]), by the late summer of
1973 the smoke had cleared suffciently that most researchers (including me)
were convinced that both were correct and that the existing experimental da-
ta were entirely consistent with the identification of the A phase as ABM and
the B phase as BW. The clinching NMR observations, of a lack of splitting of
the A-phase transverse resonance at low fields [35] and of a longitudinal res-
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onance at roughly the predicted frequency in the B phase [34], came in with-
in a year or so, and from then on these identifications, while occasionally
challenged in the literature, appear to have stood the test of time, and are by
now standard textbook material. It should of course be added that the hy-
pothesis of Cooper pairing leads to many other predictions, above all that of
superfluid behavior, and that this and the vast majority of other predictions
are by now very well confirmed experimentally (see for example the compre-
hensive text [36] by Vollhardt and Wölfle).

Thirty years later, following the award of the Nobel prize for my participa-
tion in these events, one question which I am frequently and legitimately
asked by journalists and others is “What is superfluid 3He good for?”
Particularly when standing next to my UIUC colleague and co-laureate Paul
Lauterbur, whose MRI research has obviously been of such direct and imme-
diate benefit to mankind, I find this question somewhat embarrassing, since
in the most direct and practical sense the most honest answer is: nothing
whatever! Helium is the most chemically inert of the elements; its application
best known to the general public is probably the filling of balloons at chil-
dren’s parties, and its main scientific application is in cryogenics, an area in
which the (rare and expensive) light isotope 3He cannot compete with its
much more readily available cousin 4He. If this were not enough, the super-
fluid phases of 3He occur only at less than one hundred-thousandth of room
temperature, a regime which is hardly conducive to most kinds of practical
application. So while it is conceivable that the “superfluid amplification”
property to be discussed below may in the future be put to use in metrology
(the determination of the fundamental constants), from all other points of
view superfluid 3He may well be the most practically useless system ever dis-
covered.

If we take a broader view, however, and content ourselves with indirect ap-
plications, the picture is much rosier. With the arguable exception of the
“fractional quantum Hall” systems discovered ten years later, the superfluid
phases of liquid 3He are probably the most sophisticated physical systems of
which we can claim a quantitative understanding, showing a subtlety of cor-
relation unprecedented in all of known physics; and the lessons learned from
them have been very widely applied elsewhere, both in condensed matter
physics (for example to the cuprate superconductors, which like 3He are be-
lieved to form Cooper pairs in an “exotic ” (non-s-wave) pairing state), and in
particle physics and cosmology; indeed, whole books(e.g., ref. [37]) have
been written on the analogies between various phenomena known experi-
mentally to occur in superfluid 3He and some postulated in particle physics
and/or the cosmology of the early universe. A second area in which the
uniquely rich structure of the order parameter (pair wave function) of su-
perfluid 3He has had fruitful consequences is in studies of chaos and turbu-
lence, and particularly of the way in which topological defects in the order pa-
rameter are generated in quenching through a phase transition (a process
which is in fact frequently regarded as a model for processes believed to occur
in the early universe).
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However, to my mind the single most exciting property characteristic of the
superfluid phases of 3He is the “superfluid amplification” associated with the
existence of SBSOS. By “superfluid (or Bose) amplification” I mean that the
fact that all the Cooper pairs have to behave identically has the consequence
that tiny effects which in a normal system would be completely quenched by
thermal disorder may become spectacularly visible. In itself this property is of
course not peculiar to 3He; in a BCS superconductor the Josephson effect
and, less obviously, the Meissner effect itself can be regarded as illustrations
of this behavior. What is new and unique19 about the superfluid 3He system is
the fact that the Cooper pairs have one or more nontrivial internal (orienta-
tional) degrees of freedom, and must all behave identically with respect to
these as well as to the center-of-mass motion (i.e., most show the property of
SBSOS). As a result, the phenomenon of superfluid amplification occurs also
in properties associated with the internal (relative) motion. We already saw
one striking example of this in the NMR behavior; I would like to close with a
second potential application of this principle which, if it can be realized ex-
perimentally, should be even more spectacular.

Unlike the gravitational and electromagnetic interactions, which have di-
rect and obvious manifestations at the everyday (macroscopic) level, the weak
interaction postulated in particle physics has so far manifested itself directly
only at the microscopic level. One striking property of this interaction which
distinguishes it from the other known interactions (gravitational, electro-
magnetic and strong) is that it violates the principle of invariance under spa-
tial inversion (P); the consequences of this violation have been seen in scat-
tering experiments, and more recently in the optical behavior of heavy atoms.
It is interesting to ask: Is it possible to see the effects of this P-violation at the
macroscopic level? In discussing this question it is important to bear in mind
that, except for a very small “CP-violating” component (of order 10–3 of the
total), the weak interaction respects the principle of invariance under time
reversal (T). As a result, if we ignore for present purposes the small CP-vio-
lating component, the weak interaction cannot give rise to an electric dipole
moment (EDM) on any “simple” quantum system (elementary particle, atom
or molecule). The reason is as follows: by the Wigner-Eckart theorem, such
an EDM (d) would have to be proportional to the only vector quantity char-
acterizing this system, namely the total angular momentum J. But the ansatz
d = const. J evidently violates T as well as P, and hence (in the absence of CP-
violation) is unviable.

Consider however the Cooper pairs in the (pseudo-isotropic) B phase of
superfluid 3He. Because of the nonlinearity of the generalized BCS equation
which describes the formation of pairs, the pseudo-isotropic state (as distinct
from the original 3P0 state of BW and Vdovin) is not characterized by a well-
defined angular momentum L+S � J. However, it does possess a characteris-
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tic vector which has a finite expectation value in the ground state, namely the
vector � L̂ � Ŝ�, which turns out to be directed along the “spin-orbit rotation
axis” �̂ (see above). Since both L and S are axial vectors and odd under time
reversal, the ansatz

violates P but not T, and is therefore allowed by symmetry even in the absence
of CP-violation.

A calculation [38] of the order of magnitude of the EDM expected to be
produced by the weak interaction in 3He-B indicates that it involves a number
of dimensionless factors which are each individually small in this system, and
that as a result the EDM on a single Cooper pair is something like ten orders
of magnitude smaller than the smallest EDM which would be visible (if real-
ized on, e.g., the neutron) in current beam experiments. However, now
comes the crunch: because of the property of SBSOS, all the Cooper pairs
must have exactly the same value of �L � S� and hence of d, so that the total
EDM of the system is in principle macroscopic! Although calculations indi-
cate it is still extremely small, it is not obvious beyond the reach of existing
measurement techniques, and Doug Osheroff at Stanford is currently build-
ing an experiment to look for it. If it can be seen, it will be the first ever ex-
ample of a direct manifestation of the weak interaction, and in particular of
its characteristic property of P-violation, at the level of everyday life.

In conclusion I would first like to thank those who did the hard work in-
volved in nominating me for the Nobel prize, and the Physics Committee of
the Royal Swedish Academy of Sciences for the even harder work which even-
tually resulted in my selection; I am very conscious that I am only one of a
number of researchers whose work both before and after the experimental
discovery helped to clarify the nature of the new phases, and in this context it
is impossible not to mention one name in particular, that of Phil Anderson,
who with various collaborators contributed so many vital insights during these
years and later. Secondly, I would like to thank all those who in one way or an-
other helped me along the path which has led me to stand here today. In par-
ticular I am grateful to the late Fr. Charles O’Hara for introducing me to the
marvels of modern mathematics and giving me the confidence that I could
do it if I ever had to; to David Brink and Michael Baker for accepting me, a
classics graduate with zero formal training in physics, to do a second under-
graduate degree in that subject, and to the Fellows of Merton College,
Oxford, for providing the means for me to do it: to the late Dirk ter Haar for
accepting me–still the proverbial dark horse–to do an advanced degree in
theoretical physics, and to the faculty of Magdalen College, Oxford, for elect-
ing me to a fellowship which considerably more than kept body and soul to-
gether while I did it and thereafter; and to David Pines for choosing me as his
postdoc at University of Illinois at Urbana-Champaign, and for his encour-
agement in my first ventures into the area of superfluid 3He. I owe special
thanks to Bob Richardson, Doug Osheroff, Dave Lee and Willy Gully for their
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generosity in sharing their data with me long before publication, and for in-
numerable, fruitful and inspiring discussions; and to David Mermin, Vinay
Ambegaokar, Joe Serene and other members of the Cornell theoretical group
for their help, particularly (but not only) with the technical details of the cal-
culation. In this context I should also mention Shin Takagi, who while not
around for the period I have reviewed became an invaluable collaborator in
my later work on superfluid 3He.

Finally, I owe a huge debt to the various people who have supported me in
my research over the years, whether, like my former colleagues at Sussex and
my current ones at Illinois, by providing a congenial academic environment,
or in less direct but equally important ways through their friendship and en-
couragement. In this last category I am especially grateful to my wife,
Haruko, to whom I was getting engaged just as all the excitement I have de-
scribed was happening, and who nevertheless tolerated and even encouraged
my going off by myself to Cornell for that vital month–and who, with my
daughter Asako, has been equally supportive of my research, and tolerant of
its sometimes unreasonable-seeming demands, over the last 30 years. To all of
you, my sincere and heartfelt thanks. 
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