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I. INTRODUCTION

The citation for my share of the 1998 Nobel Prize in chemistry refers to the
“development of the density functional theory”. The initial work on Density
Functional Theory (DFT) was reported in two publications: the first with
Pierre Hohenberg in 1964[!) and the next with Lu J. Sham!?! in 1965. This
was almost 40 years after E. Schroedinger!3! published his first epoch-making
paper marking the beginning of wave-mechanics. The Thomas-Fermi theory,
the most rudimentary form of DFT, was put forward shortly afterwards!* 5]
and received only modest attention.

There is an oral tradition that, shortly after Schroedinger’s equation for the
electronic wave-function ‘¥ had been put forward and spectacularly validated
for simple small systems like He and H,, P.M. Dirac declared that chemistry
had come to an end - its content was entirely contained in that powerful
equation. Too bad, he is said to have added, that in almost all cases, this equa-
tion was far too complex to allow solution.

In the intervening more than six decades enormous progress has been
made in finding approximate solutions of Schroedinger’s wave equation for
systems with several electrons, decisively aided by modern electronic com-
puters. The outstanding contributions of my Nobel Prize co-winner John
Pople are in this area. The main objective of the present account is to ex-
plicate DFT, which is an alternative approach to the theory of electronic
structure, in which the electron density distribution n(7), rather than the
many electron wavefunction plays a central role. I felt that it would be useful
to do this in a comparative context; hence the wording “Wavefunctions and
Density Functionals” in the title.

In my view DFT makes two kinds of contribution to the science of multi-
particle quantum systems, including problems of electronic structure of
molecules and of condensed matter:

The first is in the area of fundamental understanding. Theoretical chemists
and physicists, following the path of the Schroedinger equation, have become
accustomed to think in a truncated Hilbert space of single particle orbitals. The
spectacular advances achieved in this way attest to the fruitfulness of this per-
spective. However, when high accuracy is required, so many Slater deter-
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minants are required (in some calculations up to ~ 10°!) that comprehension be-
comes difficult. DFT provides a complementary perspective. It focuses on
quantities in the real, 3-dimensional coordinate space, principally on the
electron density n(r) of the groundstate. Other quantities of great interest
are: the exchange correlation hole density n_(%7") which describes how the
presence of an electron at the point r depletes the total density of the other
electrons at the point r; and the linear response function, y(%r’;®), which de-
scribes the change of total density at the point rdue to a perturbing potential
at the point 7, with frequency @. These quantities are physical, independent of
representation, and easily visualisable even for very large systems. Their un-
derstanding provides transparent and complementary insight into the nature
of multiparticle systems.

The second contribution is practical. Traditional multiparticle wavefunc-
tion methods when applied to systems of many particles encounter what I call
an exponential wall when the number of atoms, N, exceeds a critical value
which, for “chemical accuracy”, currently is in the neighborhood of N, ~ 10
(to within a factor of about 2) for a system without symmetries. A major im-
provement along present lines in the analytical and/or computational aspects
of these methods will lead to only modest increases in N,. Consequently,
problems requiring the simultaneous consideration of very many interacting
atoms, N/N, > 1, such as large organic molecules, molecules in solution,
drugs, DNA, etc. overtax these methods. On the other hand, in DFT, comput-
ing time T rises much more moderately with the number of atoms, currently
as T~ N®with a ~ 2-3, with ongoing progress in bringing a down towards «
~ 1 (so-called linear scaling). The current state of the art of applied DFT can
handle systems with up to N} = 0(10%)-0(10%) atoms.

The following figures and legends illustrate what can currently be achiev-
ed. In these examples the number of atoms is 0(10%) and the number of elec-
trons several times larger.

In Section 1, I shall talk about traditional wavefunction methods and con-
trast their great success for few-atom systems with their fundamental limita-
tions in dealing with very-many-atom systems.

Section 2 deals with DFT against the backdrop of wavefunction methods.
The basic theory is summarized: First the original Hohenberg-Kohn (HK)
variational principle, where n(7) is the variational variable, is described. This
is followed by the Kohn-Sham (KS) self-consistent single-particle equations
which involve the well-defined exchange — correlation functional, Exc[n(r)].
In principle, when used with the exact E_, these single particle equations in-
corporate all many-body effects.'

Next the physics of E_[n(r)] is discussed in terms of the concept of the ex-
change correlation hole n_(57). I have found the concept of “nearsighted-
ness” useful which, in the present context, says that the exchange correlation
hole n_(57’) for an electron at the point ris largely determined by p - v, (7),
where y is the chemical potential and v,,(7) is the effective single particle

"It is however known that for some density distributions E_[n(7)] cannot be defined.
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Figure 1. Methanol inside a cage of the zeolite sodalite. Zeolites are crystalline arrays of cages
built of silicon (blue), aluminum (yellow), and oxygen (red) atoms. For each Alatom one must
have a positive counter-ion (in this case H* (white)). A methanol molecule is inside the cage (car-
bon is green) where it can react with the proton. DFT calculations have assigned and clarified the
IR spectra, have determined the binding sites of methanol, and have calculated the activation
energy for the reaction. Acid catalysis in zeolites is widely used in the chemical industry. (After E.
Nusterer, P. Bloechl and Karlheinz Schwarz, Angew. Chem. 35, 175).

potential for 7 near r. Although nearsightedness becomes a well defined con-
cept only for metallic systems which are very large, it has been found to be
useful also for systems as small as a single atom.

There follows a brief discussion of approximations for £ , which reflect
nearsightedness, and other general principles.

Parts ITI-V discuss applications of DFT to electronic groundstates, as well as
a host of generalizations to other electronic and non-electronic systems.

Finally a few concluding remarks and speculations are offered.

II. SCHROEDINGER WAVEFUNCTIONS - FEW VERSUS MANY
ELECTRONS

The foundation of the theory of electronic structure of matter is the non-
relativistic Schroedinger equation for the many-electron wavefunction ‘¥,
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Figure 2. The geometric structure of the clathrate S'rgGawGe% (Sr red, Ga blue, Ge white) and its
charge density in a plane bisecting the centers of the cages. DFT calculations have shown that the
Sr atoms are weakly bound and scatter phonons effectively, thereby, lowering thermal conducti-
vity. However, contrary to intuitive expectations, the Sr atoms do not donate electrons to the
frame and are practically neutral. Conductivity is due to electrons traveling through the frame,
not through the one-dimensional Sr “wires” in the structure; there is thus little scattering of con-
duction electrons, by Sr vibrations. For these reasons, the compound is a metal with a large
Seebeck coefficient (unlike ordinary metals). The calculation suggests that other compounds of
this type may be even better thermoelectrics. (Theory by N.P. Blake and H. Metiu, submitted for
publication).

h?
e v s EYW =0, (21
2m; J Zln R@' ZI'I”]—’I“| } 5 (2ul)

where r. are the positions of the electrons and R,, Z, the positions and atomic
numbers of the nuclei; #i, m and e are the conventional fundamental con-
stants; and E is the energy. This equation reflects the Born-Oppenheimer ap-
proximation, in which - for purposes of studying electron-dynamics — the
much heavier nuclei are considered as fixed in space. This paper will deal
largely with non-degenerate groundstates. The wavefunction ¥ depends on
the positions and spins of the N electrons but in this paper spins will general-
ly not be explicitly indicated. Thus
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Figure 3. Fully Hydroxylated Aluminum (0001) Surface. (Red-O; blue-interior Al; grey-H-atoms;
the green lines are H-bonds). Each surface Al-atom in AL O, has been replaced by 3 H-atoms. The
figure represents a superposition of configurations in a molecular dynamics simulation at regu-
lar intervals of 1 ps. These calculations help to understand the complex dynamics of water ad-
sorption on aluminum (K.C. Haas ef al., Science 282, 265 (1998)).

U = U(ry,72,..TN)- (2.2)
The Pauli principle requires that
Pyl = -V, (2.3)

where P, permutes the space and spin coordinates of electrons jand j'. All
physical properties of the electrons depend parametrically on the R, , in par-
ticular the density n(7) and total energy £ which play key roles in this paper:

n(r) = n(r; Ry, ...Ry) , (2.4)
E = E(Ry,...Ry) , (2.5)
where N is the number of nuclei.
A. Few Electron Systems—the H, Molecule
The first demonstrations of the power of the Schroedinger equation in chem-

istry were calculations of the properties of the simplest multielectron mole-
cule, HQ: Its experimental binding energy® and internuclear separation are

* This is the observed dissociation energy plus the zero point energy of 0.27 eV.
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E,,: D =475V, R=0740 A (2.6)

The earliest quantum theoretical estimate was made by Heitler and London
in 1927161 who used the Ansatz

Uy = Alpn(r — Ri)en(ra — Re) + pu(ri — Ra)on(r: — Rl xo . (2.7)

where @ (r, — R)) is the orbital wavefunction of electron 1 in its atomic
groundstate around a proton located at R, etc; y, denotes the spin singlet
function; and A is the normalization. The components of this wavefunction
describe two hydrogen atoms, at R, and R,, with spins pointing in opposite di-
rections. The combination satisfies the reflection symmetry of the molecule
and the Pauli principle. The expectation value of the Hamiltonian as a func-
tion of R= |R1 — R, | was calculated. Its minimum was found to occur at R=
O.87/§, and the calculated dissociation energy was 3.14¢V, in semiquantitative
agreement with experiment. However the errors were far too great for the
typical chemical requirements of lsR| <0.01 Aand I6D | <0.1eV,

An alternative Ansatz, analogous to that adopted by Bloch for crystal elec-
trons, was made by Mullikan in 1928171

VpMm = <,0moz(7”1)<,0mol(T2) - Xo, (2.8)

where
Pmat(T1) = A'(pr(r1 — R1) + @r(r — Rs)) , (2.9)

and A’ is the appropriate normalization constant. In this function both elec-
trons occupy the same molecular orbital ¢, (7). The spin function y is again
the antisymmetric singlet function. The results obtained with this function
were R=0.76 /i, and D= 2.65¢V, again in semiquantitative agreement with ex-
periment.

The Mullikan Ansatz can be regarded as the simplest version of a more
general, so-called Hartree-Fock Ansatz, the Slater determinant

1
Uyp = WDet | ©m(r1)a(D)eon(r:)B(2) |, (2.10)

where @, (1) is a general molecular orbital and a and f denote up and down
spin functions. For given R= |R1 - R, | , minimization with respect to @, (7) of
the expectation value of H leads to the non-local Hartree Fock equations!®!
for the molecular orbital ¢_(7), whose solution gives the following results:
R=0.74 4, D = 3.63¢V.

The most complete early study of H, was undertaken by James and
Coolidge in 1933, They made the very general variational Ansatz

U0 =V(r,r2)Xo0, (2.11)

where lI’(rl,r2) is a general, normalized function of r, and Tys symmetric under
interchange of 7, and 7, and respecting the spatial symmetries of the mole-
cule. The trial function ‘¥ was written as depending on a number of parame-
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ters, py,pq...py» so that for given lRl - R, |, the expectation value of the
Schroedinger Hamiltonian in ‘¥, an upper bound to the true groundstate
energy, became a function of the parameters pj, E=E(p,,....p,)- The calcula-
tions were made with M up to 13. Minimization of E(p,,...,p,,) with respect to
the p, resulted in R= 0. 740 A and D = 4.70 ¢V, in very good agreement with
experlment More recent variational calculations of the same general charac-
ter give theoretical results whose errors are estimated to be much smaller
than experimental uncertainties, and other theoretical corrections.

Before leaving the variational calculation for H,, we want to make a very
rough “guesstimate” of the number of parameters M needed for a satisfactory
result.

The number of continuous variables of lP(Tl,TQ) is 6 — 1 = 5, the reduction
by 1 reflecting axial symmetry. Let us call the number of parameter per vari-
able needed for the desired accuracy p. Since a fractional accuracy of 0(107%)
is needed for the energy, implying a fractional accuracy of 0(107™") in ¥, we
guess that 3 < p < 10. Hence M= p? = 35 - 105~ 10% - 10°.

By using symmetries and chemical and mathematical insights, this number
can be significantly reduced. Such relatively modest numbers are very manag-
able on today’s (and even yesterday’s) computers.

It is thus not surprising that for sufficiently small molecules, wavefunction
methods give excellent results.

B. Many Electrons — Encountering an Exponential Wall

In the same spirit as our last “guesstimates” for H,, let us now consider a ge-
neral molecule consisting of N atoms with a total of N interacting electrons,
where N> 10 say. We ignore symmetries and spin, which will not affect our
general conclusions. Reasoning as before, we see that the number M of para-
meter required is

M=pN,K 3<p<o0. (2.12)

The energy needs to be minimized in the space of these M parameters. Call
M the maximum value feasible with the best available computer software and
hardware; and N the corresponding maximum number of electrons. Then,
from Eq. (2.12) we find

- 1llogM
N=- 922 . (2.13)
3 logp
Let us optimistically take M~ 109 and p = 3. This gives the shocking result
- 1 9
= - —— =6{!
= 2.14
3 oag — o) - (2.14)

In practice, by being “clever”, one can do better than this, perhaps by one
half order of magnitude, up to say N ~ 20. But the exponential in Eq. (2.12)
represents a “wall” severely limiting N.

Let us turn this question around and ask what is the needed M for N= 100.
By Eq. (2.12) and taking p = 3 we find
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M ~ 3300 ~ 10150(!) (215)

I cannot foresee an advance in computer science which can minimize a quan-
tity in a space of 10'%° dimensions. Of course, estimates like Eq. (2.15) are
very rough and only their logarithm should be taken seriously. But the “ex-
ponential wall” is real and reflects the interconnectedness of ¥ (r,....,ryy) in the
3N dimensional configuration space defined by the requirement that all 7, be
inside the 3D region containing the molecule.

We conclude that traditional wavefunction methods, which provide the “re-
quired” chemical accuracy are generally limited to molecules with a small
total number of chemically active electrons, N< O(10).

C. Some Meta-physical-chemical Considerations
The following remarks are related to a very old paper by one of my teachers,
J.H. Van Vleck,!'! in which he discusses a problem with many-body wavefunc-
tions, later referred to as the Van Vleck catastrophy.

I begin with a provocative statement. In general the many-electron wavefunction
W (n,...,7y) for a system of N electrons is not a legitimate scientific concept, when N 2
N,, where N, = 10°.

I will use two criteria for defining “legitimacy”: a) That ¥ can be calculated
with sufficient accuracy and b) can be recorded with sufficient accuracy.

Construction of an accurate approximation to V.
Without leaving the context of wavefunctions, I shall call the approximate
wavefunction P sufficiently accurate if

| &,0) 2> 05 , (2.16)

arather liberal requirement. (One could equally well choose 0.9 or 0.1).

Consider now the example of N’ non-overlapping identical n-electron mo-
lecules with exact wave-functions ¥ (r),...,1,), and approximate wave-functions
Y (n,...,r,). Letus take n= 10 and posit that a very accurate i, can be calculat-
ed with

| (e, ¥) |= 1 — € where e =1072 | (2.17)

again a liberal estimate.

Then, for an N'-molecule system with N’ ~ 102, and thus N = 10? electrons
(FL¥)=(1-N ~eNex el ~0.37, ie., almost acceptable by the criterion
(2.16). Note however, that for N = 104, (¥, ¥) ~ ¢'° ~ 5 x 10 so that
|‘i’, 4 F ~ 3 x 107°(!) - the exponential wall is again there, in another form.
For fully interacting systems the situation is much worse and our estimate of
N, = 10% is probably much too high.

Can this problem ever be overcome along present lines of thought? I think
not. Even if there were no computational limits, other physical effects, such as
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relativistic or radiative corrections which may be minor for systems of small N
exponentiate when N exceeds N,
(It is obvious that the estimates made above have only logarithmic validity).

Recording of W( 71:-’2:-—-4:—71\1)—'

Let us now assume that somehow we have obtained an accurate approxima-
tion to ¥, in the sense of Eq (2.16), and wish to record it so it can be repro-
duced at a later time. How many bits are needed? Let us take q bits per varia-
ble. Then the total number of bits is

B=¢gV (2.18)

For g = 3, a very rough fit, and N= 102, B = 10'%%, a quite unrealistic number.
(The total number of baryons in the accessible universe is estimated as 108%).

Having attempted to discredit the very-many-electron wavefunction
W(r,....,7\), for many electrons I must, of course, recall two well-known facts:
physically/chemically interesting quantities, like total energy E, density n(r),
pair correlation function g(x7'), etc. depend on only very few variables and,
formally, can be thought of as obtained by tracing over all other variables, e.g.

n(r) = N/ U*(r, 19, .., TN)Y(7, 72, ...y TN )dra.dry 5 (2.19)

and that some P’s which, by the criterion (1.16) are hopelessly “bad” for
large N, give respectable and even very accurate results for these contracted
quantities. Of course not every bad trial-¥ will give good results for these
quantities, and the question of how one discriminates the useful “bad” P,
from the vast majority of useless “bad” ¥’s requires much further thought.
This issue is related, I believe, to the concept of “nearsightedness” which 1
have recently suggested!1%.

In concluding this section I remark that DFT, while derived from the N-par-
ticle Schroedinger equation, is finally expressed entirely in terms of the den-
sity n(7), in the Hohenberg-Kohn formulation,!!! and in terms of n(7) and
single-particle wavefunctions (), in the Kohn-Sham formulation®!. This is
why it has been most useful for systems of very many electrons where wave-
function methods encounter and are stopped by the “exponential wall”.

III. DENSITY FUNCTIONAL THEORY-BACKGROUND

In the fall of 1963, I was spending a sabbatical semester at the Ecole Normale
Supérieure in the spacious office of Philippe Noziéres. A few weeks after my
arrival Pierre Hohenberg, also a visitor from the US, joined forces with me.
Ever since my period at the Carnegie Institute of Technology (1950-1959) 1
had been interested in disordered metallic alloys, partly because of the excel-
lent metallurgy department and partly because of the interesting experimen-
tal program of Emerson Pugh, in Physics, on substitutional alloys of Cu with
the adjacent elements in the periodic table, such as Cu Zn,_. These alloys were
viewed in two rather contradictory ways: As an average periodic crystal with
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non-integral atomic number Z = xZ, + (1-x) Z,(Z, = 29, Z, = 30). This model
nicely explained the linear dependence of the electronic specific heat on x.
On the other hand the low temperature resistance is roughly proportional to
x(1-x), reflecting the degree of disorder among the two constituents. While
isolated Cu and Znr atoms are, of course, neutral, in a Cu-Zn alloy there is
transfer of charge between Cu and Zr unit cells on account of their chemical
differences. The electrostatic interaction energy of these charges is an im-
portant part of the total energy. Thus in considering the energetics of this
system there was a natural emphasis on the electron density distribution n(r).
Now a very crude theory of electronic energy in terms of the electron den-
sity distribution, n(7), the Thomas-Fermi (TF) theory, had existed since the
1920s[4) 5] It was quite useful for describing some qualitative trends, e.g. for
total energies of atoms, but for questions of chemistry and materials science,
which involve valence electrons, it was of almost no use; for example it did
not lead to any chemical binding. However the theory had one feature which
interested me: It considered interacting electrons moving in an external po-
tential v(r), and provided a highly over-simplified one-to-one implicit relation
between v(7) and the density distribution n(7):
2m
n(r) = 1= v ) (7= 5o o

n(r’
Vess(r) = v(r) + / —), dr’, (3.2)
|r—7"|
where pis the r-independent chemical potential; Eq. (3.1) is based on the ex-
pression

n = y(p —v)*? (3.3)

for the density of a uniform, non-interacting, degenerate electron gas in a con-
stant external potential v; and the second term in (3.2) is just the classically
computed electrostatic potential times (-1), generated by the electron densi-
ty distribution »(7"). Since Eq. (3.1) ignores gradients of v £yr/(r) it was clear that
the theory would apply best for systems of slowly varying density.

In subsequent years various refinements (gradient-, exchange-and correla-
tion corrections) were introduced, but the theory did not become signifi-
cantly more useful for applications to the electronic structure of matter. It was
clear that TF theory was a rough representation of the exact solution of the
many-electron Schroedinger equation, but since TF theory was expressed in
terms of n(r) and Schroedinger theory in term of ¥ (r,,...,7,), it was not clear
how to establish a strict connection between them.

This raised a general question in my mind: Is a complete, exact description of
groundstate electronic structure in terms of n(7) possible in principle. A key
question was whether the density n(r) completely characterized the system. It
was true in TF theory, where n(7), substituted in Eq. (3.1) yields, (ve/j(r) -
and, by (3.2), (v(7) — u). In addition, n(r) also yields the total number of elec-
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trons by integration. Thus the physical system is completely specified by n(7).
It was also simple to check that the same was true for any 1-particle system, as
well as for a weakly perturbed, interacting, uniform electron gas

v(r) =v + A (r) AK1), (3.4)

n(r) = ng + Any(r) + ..., (3.5)

for which v, (7) can be explicitly calculated in term of n,(r) by means of the
wave-number-dependent susceptibility of the uniform gas. This suggested the
hypothesis that a knowledge of the groundstate density of n(r) for any electronic
system, (with or without interactions) uniquely determines the system. This hypothesis
became the starting point of modern DFT.

IV. THE HOHENBERG-KOHN FORMULATION OF DENSITY
FUNCTIONAL THEORY

A. The Density n(r) as the Basic Variable

The Basic Lemma of HK. The groundstate density n(r) of a bound system of
interacting electrons in some external potential v(r) determines this potenti-
al uniquely!!.

Remarks:
(1) The term “uniquely” means here up to an uninteresting additive con-
stant.
(2) In the case of a degenerate groundstate, the lemma refers to any ground-
state density n(r).
(3) This lemma is mathematically rigorous.
The proof is very simple. We present it for a non-degenerate groundstate.
Let n(7) be the non-degenerate groundstate density of N electrons in the
potential v, (7), corresponding to the groundstate ¥, and the energy E,.
Then,

By = (01, Hi¥) = [wi(n(r)dr + (00, T+ D)) @)

where H, is the total Hamiltonian corresponding to v, and Tand Uare the
kinetic and interaction energy operators. Now assume that there exists a
second potential v,(7), not equal to v (r) + constant, with groundstate ‘¥,
necessarily # ¢’®¥, which gives rise to the same n(r). Then

B, = / va(r)n(r)dr + / (U, (T + U)s). (49)

Since ¥, is assumed to be non-degenerate, the Rayleigh-Ritz minimal prin-
ciple for ¥, gives the inequality,
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By < (Uy, Hy W) = / v (F)n(r)dr + (Ug, (T + U)Ty)
= Bp+ [(ul) —wa()n()dr. @9
Similarly
By < (01, H¥y) = By + [(wa(r) = vi(r)n(r)dr ;1.0

where we use < since the non-degeneracy of ¥, was not assumed. Adding
(4.3) and (4.4) leads to the contradiction

E, + E, <E + E,. (4.5)

We conclude by reductivo ad absurdum that the assumption of the existence of
a second potential v,(7), which is unequal to v (7) + constant and gives the
same n(7), must be wrong. The lemma is thus proved for a non-degenerate
groundstate.

Since n(r) determines both Nand v(7) (ignoring an irrelevant additive con-
stant) it gives us the full H and N for the electronic system. Hence n(7)
determines implicitly all properties derivable from H through the solution of
the time-independent or time-dependent Schroedinger equation (even in
the presence of additional perturbations like electromagnetic fields), such as:
the many-body eigenstates ¥ (r,...,r,), YW (r,...,), ... the 2-particle
Green’s function G(7 ¢, 7,t,), the frequency dependent electric polarizability
a(w), and so on. We repeat that all this information is implicit in n(r), the
groundstate density.

Remarks:

1. The requirement of non-degeneracy can easily be lifted!!2].

2. Of course the lemma remains valid for the special case of non-interacting
electrons.

3. Lastly we come to the question whether any well-behaved positive function
n(r), which integrates to a positive integer N, is a possible groundstate den-
sity corresponding to some v(r). Such a density is called vrepresentable
(VR). On the positive side it is easy to verify that, in powers of A, any near-
ly uniform, real density of the form n(7) = n_+ AZ n(q) #77is VR, and that
for a single particle any normalized density n(r) = '([I (n P is also VR. On
the other hand Levy!'® and Lieb ['*! have shown by an example which in-
volves degenerate groundstates, that there do exist well-behaved densities
which are not VR. The topology of the regions of vrepresentability in the
abstract space of all n(r) continues to be studied. But this issue has so far
not appeared as a limitation in practical applications of DFT.

B. The Hohenberg-Kohn Variational Principle
The most important property of an electronic groundstate is its energy E. By
wavefunction methods E could be calculated either by direct approximate
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solution of the Schroedinger Equation HY = E¥ or from the Rayleigh Ritz
minimal principle,

E = ming(¥, HY) , (4.6)

where ¥ is a normalized trial function for the given number of electrons, N.

The formulation of the minimal principle in terms of trial densities, 7(7),
rather than trial wavefunctions ¥ was first presented in ref. 1. Here we shall
follow the more succinct derivation due to Levy!!3! and Lieb(!¥], called the
constrained search method.

Every trial function ¥ corresponds to a trial density 7(r) obtained by inte-
grating ¥ * ¥ over all variables except the first and multiplying by N. One may
carry out the minimization of (4.6) in two stages. First fix a trial #(7) and
denote by ¥ ¢ the class of trial functions with this 7. We define the constrain-
ed energy minimum, with 7(7) fixed, as

E,[A(r)] = min, (¥2, HY2)

= /v(r)ﬁ(r)dr + Fla(r)], (4.7)

where
F[A(r)] = ming (U5, (T + U)¥5,) - (4.8)

Fl7(7)] requires no explicit knowledge of v(r). It is a universal functional of
the density 7(r), (whether the latter is VR or not). In the second step mini-
mize (4.7) over all n,

E = mina Bu[A(r)] = minag){ / w(r)a(r)dr + FIA(r)]}. (4.9)

For a non-degenerate groundstate, the minimum is attained when 7(7) is the
groundstate density; and, for the case of a degenerate groundstate, when
Ai(r) is any one of the groundstate densities. The HK minimum prin-.
ciple (4.9) may be considered as the formal exactification of Thomas-Fermi
theory.

The formidable problem of finding the minimum of (P, HYP) with respect
to the 3N-dimensional trial function ¥ has been transformed into the seem-
ingly trivial problem of finding the minimum of £ [#(r)] with respect to the 3-
dimensional trial function 7(7).

Actually the definition (4.8) of F[7(7)] leads us right back to minimization
with respect to 3N-dimensional trial wavefunctions. Nevertheless, significant
formal progress has been made: the strict formulation of the problem of ground-
state densities and energies entirely in terms of the density distribution #(r)
and of a well-defined, though, not explicitly known, functional of the density,
F[#(n], which represents the sum of kinetic energy and interaction energy
(T+ U), associated with 7 (see Eq. (4.8)).
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One can now easily re-derive the Thomas-Fermi (TF) theory by making the
approximations

T = /n(r)%k%(n(r))dﬁ (4.10)

U= 1 [ n()n(r)

— = drdr’, 4.11
2] Tr—r (4.11)

where ky(n) is the Fermi wave-vector of a uniform electron gas of density n
and l%k%(n) is the mean kinetic energy per electron of such a gas. The ex-
pression for U is the classical (or mean field) approximation. Various pre-
viously known corrections, of TF theory for exchange, correlation and densi-
ty gradients can also be easily re-derived.

The main remaining error is due to the seriously inadequate representa-
tion of the kinetic energy, 7, by Eq.(4.10) or its gradient-corrected forms.
This deficiency is largely remedied by the self-consistent, so-called Kohn-
Sham equations, discussed in the following Section 4C.

A second interesting class of systems n(r) = n, + n,(7), where n (1) <« n,,
could also be treated using the nidependent density-density response func-

tion, K( |r—1 ).

C. The Self Consistent Kohn-Sham Equations

Soon after the publication of the TF theory, Hartree®! proposed a set of self-
consistent single particle equations for the approximate description of the
electronic structure of atoms®!. The concept was physically very simple. Every
electron was regarded as moving in an effective single particle potential

VA n(r’)

vg(r) = -+ dr', (4.12)

[r=r]

where the first term represents the potential due to a nucleus of atomic
number Z and the second the potential due to the average density distribu-
tion n(7). (The negative charge of the electron has been allowed for). Thus
each electron obeys the single particle Schroedinger equation

(—3 7 +on()} £r) = ,(0), @13

where j denotes both spatial as well as spin quantum numbers. The mean
density is given by

N
n(r) =3 | o;(r) I, (4.14)
j=1

where, in the groundstate, the sum runs over the N lowest eigenvalues, to re-
spect the Pauli exclusion principle. Equations (4.12)—(4.14) are called the
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self-consistent Hartree equations. One may start from a first approximation
for n(7), (e.g. from TF theory), construct v,(r), solve (4.13) for the ¢j; and
recalculate n(r) from Eq. (4.14), which should be the same as the initial n(r).
If it is not one iterates appropriately until it is.

In the winter of 1964, I returned from France to San Diego, where I found
my new post-doctoral fellow, Lu Sham. I knew that the Hartree equations de-
scribed atomic groundstates much better than TF theory. The difference be-
tween them lay in the different treatments of the kinetic energy T (See Egs.
(4.10) and (4.13). I set ourselves the task of extracting the Hartree equations
from the HK variational principle for the energy, Eqs. (4.9), (4.7), (4.8),
which I knew to be formally exact and which therefore had to have the
Hartree equations and improvements “in them”. In fact it promised a
Hartree-like formulation, which - like the HK minimal principle — would be
formally exact.

The Hartree differential equation (4.13) had the form of the Schroedinger
equation for non-interacting electrons moving in the external potential Uy
Could we learn something useful from a DFT for non-interacting electrons
moving in a given external potential v(7)?. For such a system, the HK vari-
ational principle takes the form

Euplil) = [ o(r)ir)dr + Tifi(r) (w15

> F, (4.16)
where (assuming that 7(r) is VR for non-interacting electrons),

T [#(7)] = kinetic energy of the groundstate of non-interacting (4.17)
electrons with density distribution 7 (7).

The Euler-Lagrange equations, embodying the fact that the expression (4.14)
is stationary with respect to variations of 7%(7) which leave the total number of
electrons unchanged, is

SEIRI) = [ 67(r) (o) + s TR oo —ehdr =0, (a1

where 7(7) is the exact groundstate density for v(r). Here £is a Lagrange mul-
tiplyer to assure particle conservation. Now in this soluble, non-interacting
case we know that the groundstate energy and density can be obtained by cal-
culating the eigenfunctions @,(7) and eigenvalues ¢; of non-interacting,
single-particle equations

1
(=5 V* +u(r) — &)p;(r) = 0, (419)

yielding

N N
E=Y¢ ;nr)y=Y1pir) . (4.20)
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(Here jlabels both orbital quantum numbers and spin indices, + 1).

Returning now to the problem of interacting electrons, which had previous-
ly been addressed approximately by the single-particle-like Hartree equations,
we deliberately wrote the functional F{7(7)] of Eq. (4.8) in the form

n(r)n(r
FAe) = T + 5 [ T ardr’ + Blir)] . @20
where T [#(r)] is the kinetic energy functional for non-interacting electrons,
Eq. (4.15). The last term, E_[7(r) ], the so-called exchange-correlation ener-
gy functional is then defined by Eq. (4.21). The HK variational principle for in-
teracting electrons now takes the form,

Efi(r)] = [v(r)a(r)dr + TRE) + 5 / = "(Ti)d dr' + Bc[a(r)] (4.22)

>E.

The corresponding Euler-Lagrange equations, for a given total number of
electrons has the form

S = [ S8 vurs 1) + G TR sy = b =0, (423

where
V() = v(r) +/| dr + (1) (4.24)
and
Vae(T) = Bl i) | (4.25)
zc 57 ( ) zc #{r)=n(r) .

Now the form of Eq. (4.23) is identical to that of Eq. (4.18) for non-interacting
particles moving in an effective external potential v, instead of v(7), and so
we conclude that the minimizing density n(r) is given by solving the single-
particle equation

1
(_E V2 +vess(r) — €5) (1) =0, (4.26)
with

N
n(r) =3 | ir) ?, (4.27)

=1

n{r

Vesr(r) =v(r) + / ’T—(_Z—,Tdr' + Vge(T), (4.28)

where v,_(7) is the local exchange-correlation potential, depending functio-
nally on the entire density distribution 7(7), as given by Eq. (4.25). These self-
consistant equations are now called the Kohn-Sham (KS) equations.
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The groundstate energy is given by

E=Y ¢+ Edn(r)] - / Vae(r)n(r)dv — = ’l’(:)”(’,"l) (4.29)

If one neglects E, and v, altogether, the KS equations (4.26)-(4.29), reduce
to the self-consistent Hartree equations.

The KS theory may be regarded as the formal exactification of Hartree
theory. With the exact E, and v, _all many body effects are in principle includ-
ed. Clearly this directs attention to the functional E_[7(r)]. The practical use-
fulness of groundstate DFT depends entirely on whether approximations for
the functional E, [7i ()] could be found, which are at the same time suffici-
ently simple and sufficiently accurate. The next section V briefly describes the
development and current status of such approximations.

Remarks:

1. The exact effective single particle potential v ef/(r) of KS theory, Eq. (4.28)
can be regarded as that unique, fictitious external potential which leads,
for non-interacting particles, to the same physical density n(r) as that of the
interacting electrons in the physical external potential v(7). Thus if the
physical density n(7) is independently known (from experiment or—for
small systems—from accurate, wavefunction-based calculations) v j(r) and
hence also v_(7) can be directly obtained from the density n(r) [15{

2. Because of thelr linkage to the exact physical density n(7), the KS single
particle wavefunctions ¢,(r) may be considered as “density-optimal”, while,
of course, the Hartree-Fock HF wavefunctions (pj’” (7) are “total energy-op-
timal” in the sense that their normalized determinant leads to the
lowest groundstate energy attainable with a single determinant. Since the
advent of DFT the term “exchange energy” is often used for the exchange
energy computed with the exact KS (p].(r), and not with the HF (pjfm . (For
the uniform electron gas the two definitions agree; typically the differences
are very small).

3. Neither the exact KS wavefunctions ¢, nor energies & have any known,
directly observable, strict meaning, except for a) the connection (4.27)
between the ®; and the true, physical density n(r); and b) the fact that the
magnitude of the highest occupied ¢, relative to the vacuum equals the
ionization energy 161,

In concluding this Section we remark that most practical application of

DFT use the KS equations, rather than the generally less accurate HK for-

mulation.

V. APPROXIMATION FORE_[#(r)]: FROM MATHEMATICS TO
PHYSICAL SCIENCE

So far DFT has been presented as a formal mathematical framework for viewing
electronic structure from the perspective of the electron-density n(7). This
mathematical framework has been motivated by physical considerations, but
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to make concrete use of it we require effective approximations for F{n(r)] in
the HK formulation, and for E,_[7(7)] in the KS formulation. These approxi-
mations reflect the physics of electronic structure and come from outside of DFT. In this
account I limit myself to the much more extensively used functional E_ .

The most important approximations for E_[n(r)] have a quasi-local form.
As will be discussed in Section 5B, E_[n(7)] can be written in the form

Baeln(0)] = [ exclr; n(fn(r)dr, 6.

where ¢, (;[n(7)]) represents an exchange-correlation (xc) energy/particle
at the point 7, which is a functional of the density distribution n(7). It
depends primarily on the density »(7) at points 7 near 7, where “near” is a
microscopic distance such as the local Fermi wavelength A () = [8n2n(n) ]‘1/3
or TF screening length, typically of similar magnitude. The general form of
Eq. (5.1), representing the total E_ as an integral over all space of a suitable
integrand is similar to the treatment of kinetic energy in Thomas-Fermi the-
ory, Eq. (4.10). All components of the KS energy, can be expressed in terms
of the 1- and 2- particle density matrices of the interacting and non-interac-
ting system n, (r;;1,), no (1,757, %') and n(r;;7')), nY(rrsr’ 7'y), all corres-
ponding to and uniquely defined by the same physical n(7); their calculation
involves these Green’s functions primarily for arguments, such as (r,7,") and
(rl,rQ;rl’rQ’), which are microscopically close to one another; furthermore, for
given r;, these Green’s functions depend only on the form of n(#) for # near
r, — the property of “nearsightedness” previously mentioned!!%!. This leads im-
mediately to the form (5.1) for E_[n(7)], where ¢,__is a nearsighted functional
of n(7).

We now briefly discuss several implementations of this quasi-local ap-
proach.

A. The Local Density Approximation (LDA)
The simplest, and at the same time remarkably serviceable, approximation
for E_[n(7)] is the so-called local density approximation (LDA),

EZLCDA = /ezc(n(r))n('r)dr, (5.2)

where ¢, (n) is the exchange-correlation energy of a uniform electron gas of
density n?!. The exchange part is elementary and given, in atomic units, by

0458
ez(n) = — > (5.3)

where 7, is the radius of a sphere containing one electron and given by
(4n/3)7= n!. The correlation part was first estimated by E.P. Wigner!!”!

0.44

o 5.4
re + 7.8 ®4

ec(n) =



Walter Kohn 231

and more recently with a high precision of about + 1 % by D.M. Ceperly!!®]
using Monte Carlo methods.

Remarks:

1. The LDA, obviously exact for a uniform electron gas, was a priori expected
to be useful only for densities varying slowly on the scales of the local Fermi
wavelength A, and TF wavelength, A,,. In atomic systems these conditions
are rarely well satisfied and very often seriously violated. Nevertheless the
LDA has been found to give extremely useful results for most applications.
This has been at least partly rationalized by the observation that the LDA
satisfies a sum rule which expresses the normalization of the exchange cor-
relation hole. In other words, given that an electron is at 7, the conditional
electron density n(r;r') of the other electrons is depleted near rin compa-
rison with the average density n(r’) by the hole distribution n,(r’;7) which
integrates to 1.

2. The solution of the KS equation in the LDA is minimally more difficult
than the solution of the Hartree equation and very much easier than the
solution of the HF equations. Its accuracy for the exchange energy is typi-
cally within O(10 %), while the normally much smaller correlation energy
is generally overestimated by up to a factor of 2. The two errors typically
cancel partially.

3. Experience has shown that the LDA gives ionization energies of atoms, dis-
sociation energies of molecules and cohesive energies with a fair accuracy
of typically 10-20 %. However the LDA gives bond-lengths and thus the
geometries of molecules and solids typically with an astonishing accuracy of
~1%.

4. The LDA (and the LSDA, its extension to system with unpaired spins) can
fail in systems, like heavy fermion systems, so dominated by electron-elec-
tron interaction effects that they lack any resemblance to non-interacting
electron gases.

B. Beyond the Local Density Approximation

The LDA is the “mother” of almost all approximations currently in use in
DFT. To discuss more accurate approximations we now introduce the concept
of the average xc hole distribution around a given point r. The physical xc hole is
given by

Nae(r, ') = g(r,7) = n(r') (5.5)

where g(r,r') is the conditional density at r' given that one electron is at r. It
describes the “hole” dug into the average density n(r') by the electron at
This hole is normalized

/nzc(r, rYdr' = -1 (5.6)

which reflects a total “screening” of the electron at 7, and generally is localiz-
ed due to the combined effect of the Pauli principle and the electron-elec-
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tron interaction. Of course, like everything else, it is a functional of the den-
sity distribution n(7). To define the average xc hole one introduces a fictitious,
A-depentent Hamiltonian, H, for the many body system, 0 <A < 1, which dif-
fers from the physical Hamiltonian, H, _,, by the two replacements
2 2
e . e (5.7)
| i — ;| lri—rj|

v(r) — ua(r) , (5.8)

where the fictitious v, () is so chosen that for all A in the interval (0,1) the
corresponding density equals the physical density, n(r):

na(r) = naza(r) = nlr) . (5.9)

The procedure (5.2), (5.3) represents an interpolation between the KS
system (A = 0) and the physical system (A = 1). The average xc hole density
n(xr') is then defined as

1
Age(r,7’) = /0 dAng(r,7'; A). (5.10)

Its importance stems from the exact result, proved independently in three im-
portant publications!%), that

Eie= 2/d rdr’ n(?‘)rnicg |r) ) (5.11)

An equivalent expression is*"]

B, = -% [ drn(r) B2, 107 (5.12)

where

(5.18)

R rn(F) = /d  (Thae(r, T [n(r)])

[r—7']

is the moment of degree (-1) of #_(n7), i.e., minus the inverse radius of the
A-averaged xc hole. Comparison of Egs. (5.12) and (5.1) gives the very physi-
cal, formally exact relation

exe(T; [n(F)]) = R“l(r [2(7)])- (5.14)
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Gradient Expansion and Generalized Gradient Approximation

Since R, Cl(r) is a functional of n(#), expected to be (predominantly) short-
sighted, we can formally expand n(#) around the point rwhich we take to be
the origin:

n(f) =n+ Y nf; + Z niTit; + (5.15)
where n=n(0), n,=V, n(7) | ,_o €tc., and then consider R _(7) asa function of
the coefficients n,n,n,,.... Ordering in powers of the differential operators

i
and respecting the scalar nature of R! gives

R} (r) = Fo(n(r)) + Fau(n(r)) v* n(r) + Faa(n(r))

x > (Vin(r))(Vi(n(r)) +

When this is substituted into Eq. (5.12) for E_ it leads (after an integration by
parts) to the gradient expansion

(5.16)

E,. = ELPA +/G2 (7n) 2dr+/[G4(n ven) + . ]dr + .. (5.17)

where G,(n) is a universal functional of nt2. In application to real systems this
expansion has generally been disappointing, indeed often worsened the
results of the LDA.

The series (5.15) can however be formally resummed to result in the
following sequence

E° = / e(n(r))n(r)dr (LDA), (5.18)
BY = [ 1), | wn(r) Dn(r)dr  (GGA),  (19)

ER = [ fO0(r),| vn) | Vi n()dr, 20

ESC is the (LDA), requiring the independently calculated function of one
variable, x = n. E})the so-called generalized gradient approximation (GGA)
requlres the mdependently calculated function of two variables, x = n,
=Vnlet

Thanks to Inuch thoughtful work important progress has been made in
deriving successful GGA’s of the form (5.19). Their contruction has made use
of sum rules, general scaling properties, asymptotic behavior of effective
potentials and densities in the tail regions of atoms and their aggregates. In
addition, A. Becke in his work on GGAs, introduced some numerical fitting
parameters which he determined by optimizing the accuracy of atomization
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energies of standard sets of molecules. This subject was recently reviewed[?!1.
We mention here some of the leading contributors: A.D. Becke, D.C.
Langreth, M. Levy, R.G. Parr, J.P. Perdew, C. Lee, W. Yang.

In another approach A. Becke introduced a successful Aybrid method

EMb — aEKS 4 (1 - a)ESSA, (5.21)

where E f" is the exchange energy calculated with the exact KS wavefunctions,
EGG%4 is an appropriate GGA, and a is a fitting parameter'#?). The form of this
linear interpolation can be rationalized by the A-integration in Eq. (5.10),
with the lower limit corresponding to pure exchange.

Use of GGAs and hybrid approximations instead of the LDA has reduced
errors of atomization energies of standard sets of small molecules, consisting
of light atoms, by factors of typically 3-5. The remaining errors are typically £
(2-3) kg moles per atom, about twice as high as for the best current wave-
function methods. This improved accuracy, the ease of calculation, together
with the previously emphasized capability of DFT to deal with systems of very
many atoms, has, over a period of relatively few years beginning about 1990,
made DFT a significant component of quantum chemistry.

For other kinds of improvements of the LDA, including the weighted den-
sity approximation (WDA) and self-interaction corrections (SIC) we refer the
reader to the literature, e.g.[?1].

Before closing this section I remark that the treatments of xc-effects in the
LDA and all of its improvements, mentioned above, is completely inappro-
priate for all those systems or subsystems for which the starting point of an
electron gas of slowly varying density n(r) is fundamentally incorrect.
Examples are a) the electronic Wigner crystal; b) Van der Waals (or polariza-
tion) energies between non-overlapping subsystems; c) the electronic tails
evanescing into the vacuum near the surfaces of bounded electronic systems.
However this does not preclude that DFT with appropriate, different approx-
imations could successfully deal with such problems (See Sec. VII).

VI. GENERALIZATIONS AND QUANTITATIVE APPLICATIONS

While DFT for non-degenerate, non-magnetic systems has continued to
progress over the last several decades, the DFT paradigm was also greatly ex-
tended and generalized in several directions. The purpose of this section is to
give the briefest mention of these developments. For further details we refer
to two monographs(2*): (24 and a recent set of lecture notes(?!]

A. Generalizations

a. Spin DFT for spin polarized systems: v(7), B,(7); n(7), (n4 (1) —n  (7)).

b. Degenerate groundstates: v(r); n (r) v=1,..M; E,.

c. Multicomponent systems (electron hole droplets, nuclei): v (7); n (7); K,

d. Ensemble DFT for M degenerate groundstates: v(7); n(r) ( = M 1 (Tr
n,(n); K,
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e. Free energy at finite temperatures T: v(7); n(r), Q (grand potential).

f. Superconductors with electronic pairing mechanisms: v(r), A(7) (gap
function); n___ (1), nmp”(r), E, M My

g. M excited states equi-ensembles v(7), 2(r) =M™ nu(r), E= M3, B,

h. Relativistic electrons. ! '

i. Current-density functional theory diamagnetism: v(7), curl A(r); n(),
curl j(); Ey.

j- Time-dependent phenomena: v(z5f); n(xt), and excited states u(r) e,
n(r) i E] -I=o.

k. Bosons (instead of fermions) v(7); n(7); K,

1. Combination of DFT with molecular dynamics or Monte Carlo methods
(especially for determinations of structures). (Car-Parrinello method).

m. Combination of the LDA with Hubbard on-site repulsion parameter U
(“LDA + U”).

This incomplete list is only intended to give a general sense of the great
diversity of contexts in which the basic concept of DFT has been found useful.

B. Applications

To do any kind of justice to the many thousands of applications of DFT to
physical and chemical systems is entirely impossible within the framework of
this lecture. So I will, quite arbitrarily, choose one example, the spin suscep-
tibility of the alkali metals (Table 1)25.

Table I. Spin Susceptibility of the Alkali Metals

X/ %o
Metal Variational Theory Experiment
Li 2.66 2.57
Na 1.62 1.65
K 1.79 1.70
Rb 1.78 1.72
Cs 2.20 2.24

After S.H. Vosko et al.,[25], %o 18 the Pauli susceptibility of a free electron gas.

This is an early, completely parameter-free calculation. It uses only the inde-
pendently calculated external pseudo-potential v(r) and the exchange cor-
relation energy of a spatially uniform, magnetized electron gas (the so-called
local spin density approximation, LSDA). The only input specific to each
metal is the atomic number Z Note how accurately the theoretical results
agree with the rather irregular sequence of experimental data. The devia-
tions of the ratio (x/¥,) from 1, are due, in comparable degree, to the com-
bination of the effects of the non-uniform, periodic potentials and the elec-
tron-electron interactions.

Of course these metals have, over most of space, fairly uniform densities,
which makes them favorable test-cases for local spin density calculations. For
other classes of systems and their properties the accuracies can be consider-
ably poorer, with the exception of the already mentioned very accurate
results for structures, with typically a 1% error (which is still somewhat
astonishing to me).
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Inclusion of gradient corrections and/or hybrid schemes have improved
calculated energies for large classes of chemical applications by typically al-
most an order of magnitude; in physical applications the improvement is
usually less dramatic. Accuracies of geometric parameters remain at the 1 %
level.

VII. CONCLUDING REMARKS

DFT has now been widely accepted by both physicists and chemists. For
periodic solids it is sometimes referred to as the standard model. In chemistry
DFT complements traditional wave-function based methods, particularly for
systems with very many atoms( 2 O(10)).

In cases where DFT currently works still rather poorly (e.g. long range po-
larization energies; regions of evanescent electron densities; partially filled
electronic shells; reaction barriers) it often provides clues of how our present
understanding of electronic structure in real space coordinates needs to be mo-
dified.

Looking into the future I expect that wavefunction-based and density-based
theories will, in complementary ways, continue not only to give us quantita-
tively more accurate results, but also contribute to a better physical/ chemical
understanding of the electronic structure of matter.
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