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Professor Hodgkin has told you how he was influenced as an undergraduate
by the writings of four Fellows of Trinity College, Cambridge. I too was an
undergraduate at Trinity, but by the time I was taking physiology seriously,
in my final year in 1938-1939, there was yet another Fellow of the College
who influenced me even more directly than the ones mentioned by Hodgkin,
and that was Hodgkin himself. He was one of my teachers during that year,
and my first introduction to research was the short period that we spent
together at the Marine Biological Laboratory at Plymouth in the summer of
1939, when we succeeded in recording the resting and action potentials of the
giant nerve fibre of the squid with an internal microelectrode. This work was
brought to a stop by the war, but we joined up again at Cambridge early in
1946, and almost the whole of my share in the work for which the prize was
given was done jointly with him during the succeeding five or six years.

Hodgkin has spoken about the ionic theory of the nerve impulse from a broad
point of view, and I propose to go into greater detail on the quantitative
aspects of the theory that we developed. The measurements on which this was
based were made by a feed-back method which has become known as the
"voltage clamp"1. In this, a pair of wires is introduced along the axis of the
giant nerve fibre, as shown diagrammatically in Fig. 1. The potential differ-
ence across the membrane is measured between one of these wires and an
electrode in the sea water just outside the fibre, while the other wire is used
for passing current through the membrane to another external electrode. The
voltage wire is connected to the input of an amplifier whose output goes to the

current wire, the direction of the connections being such that any accidental
change of membrane potential is almost completely annulled by the current
that the amplifier sends through the membrane. Rectangular pulses can also
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water, and the horizontal lines represent partitions in a box made of insulating material
which guided the current flow. Potential difference across membrane measured between
wires b and c; current passed from wire a to electrode e. Current through middle section
of nerve measured as potential drop in sea water between wires c and d. From Hodgkin

et al. I.

be fed into the amplifier through a second input. When this is done, the
amplifier automatically sends through the current wire whatever current may
be needed to make the membrane potential undergo step-wise changes pro-
portional to those which are applied through the second input. This current
is then displayed on a cathode-ray oscilloscope and photographed.

The net result is the same as would be obtained if a single ideal electrode was
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placed inside the 1f bre and connected to a low-impedance source of voltage
steps, and the current is recorded. A method of this kind was indeed tried by
Cole and Marmont2 in 1947, and gave useful results, but it is not suitable for
quantitative work because the current density that the electrode has to pass is
really quite large and no one has yet made an electrode that is sufficiently free
from polarisation troubles.

Analysis of the Currents Through the Nerve Membrane

In order to create a nearly instantaneous change in the potential difference
across the membrane, the membrane capacity has to be charged or discharged
by the passage of a substantial quantity of electricity in a very short time. This
pulse of capacity current can be recorded by the voltage-clamp method, but
in the figures reproduced here most of it cannot be seen because of its rapid
rise and fall, and very short total duration, which is only a few microseconds.
Analysis of these pulses has confirmed the existence of thecapacity in the mem-
brane of about 1 microfarad per square centimetre which had been demon-
strated many years earlier with alternating current methods by Curtis and
Cole3. Our present concern is however with the currents which flow in the
first few rnillisconds after the completion of this capacity current, while the
membrane potential is held constant by the feedback system.

The general features of these components of the current are illustrated in
Fig. 2. The right- hand side of the figure shows that when the normal potential
difference across the membrane is increased by 40 mV (inside made more
negative), the currents are very small. They are barely visible at the ampli-
fication used in these records, but with more gain it is found that the current is
always inwards, i. e. in the same direction as if the membrane obeyed Ohm’s
law. But where the inside of the fibre is made more positive by an equal
amount (left-hand column), the currents are of a larger order ofmagnitude;
further, if the frbre is in seawater (as in record C) there is a conspicuous early
phase in which the direction of the current is against the change of membrane
potential. If it were not for the feedback, this current would drive the inside
of the fibre still more positive, that is to say, it would produce the rising phase
of an action potential; similarly, the late phase of outward current is clearly a
manifestation of the process responsible for the falling phase. The evidence
derived from quite different experiments that Professor Hodgkin has already
presented thus suggested that the inward phase of current was carried pre-
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Fig. 2. Currents recorded during operation of the voltage clamp. Right, when potential
differrence  across membrane is increased from the resting value; left, when it is decreased.
(A) internal potential, measured from its resting level. (B) currents with axon immersed
in sea water with 90% of its NaCl replaced by choline chloride. (C) axon in sea water.
(D) again in same solution as B. Temperature, 8.5°C.  Outward current is plotted up-

wards.

dominantly by sodium ions, moving under the influence of concentration
differences and the potential difference across the membrane. If so, it should
disappear when the external sodium concentration is lowered by an appro-
priate amount. Records B and D show that this is the case.

On this interpretation, the early phase ofcurrent should actually be reversed
if the external sodium concentration is made low enough or if the internal
potential is made high enough. This does actually occur, as is shown in Fig. 3.
The curve which separates those with an early inward phase from those with
an early outward phase evidently has zero sodium current; it defines the
"sodium potential" at which the effect of the electrical potential difference
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Fig. 3. Membrane currents when the internal potential is raised to values comparable to
the peak of an action potential. Axon in sea water; temperature 3.5ºC; outward current
upwards. The records for 91 and 104 mV displacement of membrane potential show a
phase of inward current, while those at 130 and 143 mV show an early hump in the out-
ward current. The record at 117 mV shows neither, and it is therefore taken to be very
close to the sodium equilibrium potential, at which the current carried by sodium is zero.

From Hodgkin et al. I.

across the membrane just balances the tendency of the sodium ions to diffuse
from the higher concentration outside to the lower concentration inside. This
potential was found to vary with the sodium concentration in the external
fluid, and indeed in exactly the way required by Nernst’s equation. This result
is perhaps the strongest evidence for the sodium theory, and it justified us in
separating the current into two components, the earlier of which is carried
predominantly sodium ions. This was done by comparing records obtained
with the fibre in solutions with different sodiumconcentrations : the procedure
is illustrated in Fig. 4. There is evidence of several kinds that the late outward
current is carried by potassium ions. Perhaps the most convincing is the equiv-
alence that we found between the potassium efflux, measured with radioactive
potassium, and the outward current4. This is illustrated in Fig. 5.

Each of the voltage-clamp records shown so far was taken with the mem-
brane potential held constant after the initial step. The next stage in the analysis
was to find how the two components changed if the membrane potential was
suddenly altered. The result was unexpectedly simple: each component
altered instantaneously to a value which depended in a linear manner on the
new value of the membrane potential, and passed through zero at the "sodi-
um potential" or the "potassium potential" respectively. This kind of behav-
iour is what would be given by the circuit shown in Fig. 6: the resistances obey
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Ohm’s law as far as concerns the effect of sudden changes in potential, but in
addition the values of the resistances alter smoothly, in times of the order of a
millisecond, to give the time courses of current that are shown for example in
Figs. 2-4.

We can thus speak of a sodium conductance and a potassium conductance,
both in parallel with the membrane capacity, so that the total current observed
is the sum of the currents through these channels. There was also a small
component of current which obeyed Ohm’s law (with a constant resistance)
and was not noticeably affected by changes in the composition of the external
fluid. This is represented by the "leak resistance"  R l  in Fig. 6.

The final stage of the analysis was to define the time course with which the
sodium conductance and the potassium conductancechanged after the mem-
brane potential had been brought to a new value. The main features to be
incorporated are shown in Fig. 7. A striking point which for some time we

Fig. 4. Separation of ionic current into components carried by Na and K ions. Curve C,
representing the sodium current, is the difference between A (toral ionic current) and B
(Na current brought to zero by lowering external Na concentration). Temperature,

8.5ºC. From Hodgkin et a1. I.
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found difficult to formulate is the fact that each of the conductances rises with
an S-shaped time course at the start, but falls along something very like a
simple exponential if the membrane potential is restored to its resting value.
The manner in which we did in the end represent it is most simply illustrated
in connection with the potassium system. We defined a quantity n which
varied with ordinary first-order kinetics: that is to say, for each value of
membrane potential, there was corresponding equilibrium value of n and
this equilibrium value was approached exponentially with a time constant
which was also a function of membrane potential, and there was no discon-
tinuity in the value of n if membrane potential was changed suddenly. Then
the forth power of n varies in much the same way as the potassium conductance
does. In the same way, the time course of the sodium conductance behaves like 
the product m3h, where m varies rather like n but an order of magnitude more
rapidly, and h also obeys first-order kinetics but changes in the opposite direc-
tion, i.e. its equilibrium value is smaller the more positive the inside of the fibre
is made. The equilibrium values and time constants for n, m and h were esti-
mated from the curves of conductance change, and converted into the equiva-

Fig. 5. Relation between potassium efflux and membrane current density when outward
current is drawn from a Sepia axon. Vertical bars show + 2 x standard error of means.

From Hodgkin and Huxley4.
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CM

obey Ohm’s law for rapid changes in the potential difference across the membrane, but
change their values in times of the order of a millisecond if the membrane potential is held

at a new value. RL is constant.

lent pairs of first-order rate constants. Each rate constant-varied according to
the membrane potential during the step applied by the voltage clamp, and this
dependence was fitted by an empirical equation.

This analysis was in fact carried in the sequence I have presented, and the
voltage clamp results led directly to the formulation that we gave. But we
had thought up many of its features long before the voltage clamp was de-
veloped, and even before Hodgkin and Katz5, in the summer of 1947, de-
monstrated the part played by sodium in the generation of the action poten-
tial. Hodgkin and I spent a good deal of time in the early part of 1947 thinking
what kind of system might give rise to an action potential. For the rising phase,
we postulated, in the membrane, a system of sodium carriers which had a large
dipole moment. In the resting state, the dipoles were held in one position by
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Fig. 7. Time course of changes in sodium and potassium conductance when internal po-
tential is raised by 56 mV. Temperature, 8.5ºC. The continuous curves are from the
experiment of Fig. 4 and show the changes of conductance when the potential was
maintained at the raised value; the broken curves show the effect of restoring the mem-

brane potential to its resting value after 0.6 or 6.3 msec. From refs. 8 and 16.

the resting potential difference across the membrane. As the potential dif-
ference was reduced, the dipoles became free to turn and thus to ferry sodium
ions across. These carriers were assumed to become subject to "inactivation"
by reacting relatively slowly, but reversibly, with some substance in the axo-
plasm when they were in the position opposite to the one they took up in the
resting state. The outward movement of charge in the falling phase was
attributed to an increase in the potassium-permeability of the membrane
which took place with a delay when the membrane potential was reduced; this
was suggested directly by Cole’s observation6 of this kind of rectification in
the membrane together with the "inductance" which he had found and had
attributed to a lag in the establishment of the new resistance after the mem-
brane potential had been changed. Using these assumptions we computed the
time courses of membrane-potential change that would be caused by the ion
movements, and after a good deal of trial and error we found that plausible-
looking action potentials resulted when appropriate numerical values were
inserted. A propagated action potential computed in May 1947 incorporated
the main features that emerged two or three years later from the voltage-
clamp analysis: reduction of membrane potential caused (a) a rapid rise of
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sodium permeability, (b) a slower decay of sodium permeability as the carrier
became inactivated, and (c) a delayed rectification due to a rise in potassium
permeability. Features of the voltage-clamp results that we did not anticipate
were the finite delay in the rise of sodium permeability and the S-shaped
curve of potassium permeability increase; the form of the variations of
permeability with membrane potential was of course also different from what
we had assumed in 1947.

Returning to the voltage-clamp analysis, the procedure that I have described
led to a set of equations which described the time course of current through
the membrane when the potential difference across it was changed in a step-
wise manner. It was clear that the formulation we had used was not the only
one that might have fitted the voltage-clamp results adequately, and it was
by no means a foregone conclusion that the same equations would describe
the behaviour of the membrane under its normal conditions of operation,
where the ionic currents bring about changes of membrane potential instead
of being drawn off by the feed- back amplifier. We therefore calculated the
responses of our mathematical representations of the nerve membrane to the
equivalent of an electrical stimulus. Some of the computations of this kind
that we made in 1951 are shown in Figs. 8-14. They included the "membrane
action potential", i. e. an action potential in which all parts of the membrane
are active synchronously; the propagated action potential; the impedance
changes and the total movements of sodium and potassium-into and out of the
fibre in these action potentials; recovery during the relativerefractory period;
anode break excitation; and the oscillatory response of the membrane to a
rectangular pulse of current. All these results were published8 in 1952 and
showed a surprisingly good agreement with the behaviour of the real giant
axon of the squid.

The computations so far described were done by hand. This was a laborious
business: a membrane action took a matter of days to compute, and a prop-
agated action potential took a matter of weeks. But it was often quite ex-
citing. For example, when calculating the effect of a stimulus close to the
threshold value, one would see the forces of accommodation-inactivation of
the sodium channel, and the delayed rise of potassium permeability-creeping
up and reducing the excitatory effect of the rapid rise of sodium permeability.
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Fig. 8. "Membrane" action potentials, i.e. responses in which all the length of the fibre is
active synchronously. Top: computed; bottom, observed. Temperature, 6.3ºC. From

ref. 8.

Fig. 9. Propagated action potentials. Top, computed; bottom, observed. Temperature,
18.5ºC From ref. 8.
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Fig. 10. Changes of sodium and potassium conductances (full lines and scale at left) during
a propagated action potential (membrane potential change shown dotted; scale on right).

Computed for temperature of 18.5ºC. From ref. 8.

Fig. 11. Changes in total conductance of the membrane during an action potential. (A)
computed. Broken line, membrane action potential, 6ºC; full line, total membrane
conductance. (B ) records ofpropagated action potential (dots) and conductance change,

reproduced from Cole and Curtis7. From refs. 7 and 8.
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Fig. 12. Recovery during the refractory period. Membrane responses: upper part, com-
puted for 6.3ºC; lower part, records from an actual nerve, 9°C. Time scales differ by a
factor appropriate to the temperature difference. A and E, responses in resting nerve to
weak and strong stimuli respectively; B-D, responses to stimulus of same strength as in

E at various times after A. From ref. 8.

Would the membrane potential get away into a spike, or die in a subthreshold
oscillation? Very often my expectations turned out to be wrong, and an
important lesson I learnt from these manualcomputations was the complete
inadequacy of one’s intuition in trying to deal with a system of this degree of
complexity.

Later on, we extended the range of our calculated responses by using the
electronic computers EDSAC I and EDSAC II in the Mathematical Labora-
tory of Cambridge University. The first case we dealt with in this way9 was
the effect of lowered calcium concentration. Frankenhaeuser and Hodgkin10

in 1957 had shown with the voltage clamp that the main effect of changing the
calcium concentration was to shift along the membrane potential axis all the

functions which govern the permeability changes. Incorporating this change
alone into the equations made the computer deliver a variety of oscillatory
responses that were closely similar to the responses of real nerve fibres in low-
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Fig. 13. Anode break responses. Above: computed, 6.3%; below, record from a real
nerve, 18.5ºC. Time scales differ by a factor appropriate to the temperature difference.
In each case, a long-lasting steady current lowering the internal potential below its

resting value is terminated at time zero. From ref. 8.

Fig. 14. Responses of the membrane to a constant current, uniformly applied. (A) com-
puted; (B1) and (B2) bo served, for currents of + I.49 PA/cm2  and - 1.49 PA/cm*

respectively. 19°C. From ref. 8.
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calcium solutions. An example is shown in Fig. 15, where a single anodal
shock starts off a series of increasing oscillations which build up into repetitive
action potentials.

Later, we calculated the propagated action potentials corresponding to
various temperatures. It was assumed that the only effect of altered tempera-
ture was to change the rates of the permeability factors with a Q10 of 3; it is
now known that there are also appreciable changes in the absolute values of
the ionic currents11 but Fig. 16 shows that the single assumption led to results
that were strikingly similar to the experimental records that Hodgkin and
Katz12 had obtained in 1947 from real squid fibres.

Another case we computed was the effect of an anodal pulse during the
action potential itself. Various authors-had shown that such a pulse, if of suf-
ficient strength, could cause an all-or-none return of the membrane potential
to approximately its resting level. Fig. 17 shows that the computed action
potential can be abolished in the same way.

calcium concentration. A small anodal stimulus gives rise to increasing oscillations which
build up into a series of spikes which is continued indefinitely. Ordinate scale 10 times

larger in upper part of figure than in lower part. From ref. 9.
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The other situation we have explored to some extent with EDSAC II is the
response in a continuous nerve to stimuli of just threshold value applied at one
point. Some of these computations have required the mathematical represen-
tation to be set up as a partial differential equation, with the membrane prop-
erties represented separately for each of a number of points along the length
of the nerve. Several intriguing results have emerged, but it is not worth
laying much emphasis on them since the equivalent experiments on the real
nerve have not been performed, and the situations in question are so unstable
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Fig.17. Abolition of an action potential by anodal  pulses, computed for membrane
response of squid nerve at 18.5°C. Pulses of 90 x 10-9  coulomb/cm2 or less cause only
a temporary drop from the time course of the spike; pulses of 100 x 10-9 coulomb/cm2

or more cause the internal potential to fall to a level close to that reached in the "positive
phase" of the normal spike. From ref. 9.

that it may well be impossible to realise them in practice even if they are pos-
sible in principle. For example, the equations lead to solutions representing a
wave, or even a series of waves, of just threshold amplitude, travelling along
the fibre at much lower velocity than the normal spikers. Also, when a just
threshold pulse is applied at one point, action potentials may propagate away
in both directions although the membrane potential change at the stimulated
point only reaches about 20 mV.

Conclusion

The agreement between these computed responses and the potential changes
that can be recorded from real nerve fibres  is certainly encouraging, but I
would not like to leave you with the impression that the particular equations
we produced in 1952  are definitive. First, it has been clear all along that these
equations only cover the rapid events in and immediately after the action
potential and they are inadequate for dealing with questions like the mainte-
nance of the resting potential. Second, Cole and Moore14 have shown that the
rise of potassium conductance can in some conditions be much more delayed
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than is accounted for by our fourth-power formulation. Thirdly, a recent
paper by Rosalie Hoyt1 5 shows that the sodium conductance change may
satisfactorily be represented by a single variable governed by a second-order
differential equation while in our formulation it was represented by a product
of two variables each governed by a first order equation. Fourth, Bernhard
Frankenhaeuser of the Nobel Institute here has achieved the remarkable feat
of doing voltage-clamp measurements on single nodes of Ranvier in mye-
linated nerve fibres and has found that there are substantial differences in
behaviour from the squid giant axon, although the main outlines are the same.
Both Hodgkin and I feel that these equations should be regarded as a first
approximation which needs to be refined and extended in many ways in the
search for the actual mechanism of the permeability changes on the molecular
scale.
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