GAMES WITH INCOMPLETE INFORMATION

Nobel Lecture, December 9, 1994

by
JOHN C. HARSANYI
Haas School of Business, University of California, Berkeley, USA

1. Game theory and classical economics.

Game theory is a theory of strategic interaction. That is to say, it is a theory of rational behavior in social situations in which each player has to choose his moves on the basis of what he thinks the other players' countermoves are likely to be.

After preliminary work by a number of other distinguished mathematicians and economists, game theory as a systematic theory started with von Neumann and Morgenstern's book, Theory of Games and Economic Behavior, published in 1944. One source of their theory was reflection on games of strategy such as chess and poker. But it was meant to help us in defining rational behavior also in real-life economic, political, and other social situations.

In principle, every social situation involves strategic interaction among the participants. Thus, one might argue that proper understanding of any social situation would require game-theoretic analysis. But in actual fact, classical economic theory did manage to sidestep the game-theoretic aspects of economic behavior by postulating perfect competition, i.e., by assuming that every buyer and every seller is very small as compared with the size of the relevant markets, so that nobody can significantly affect the existing market prices by his actions. Accordingly, for each economic agent, the prices at which he can buy his inputs (including labor) and at which he can sell his outputs are essentially given to him. This will make his choice of inputs and of outputs into a one-person simple maximization problem, which can be solved without game-theoretic analysis.

Yet, von Neumann and Morgenstern realized that, for most parts of the economic system, perfect competition would now be an unrealistic assumption. Most industries are now dominated by a small number of large firms, and labor is often organized in large labor unions. Moreover, the central government and many other government agencies are major players in many markets as buyers and sometimes also as sellers, as regulators, and as taxing and subsidizing agents. This means that game theory has now definitely become an important analytical tool in understanding the operation of our economic system.

2. The problem of incomplete information.

Following von Neumann and Morgenstern [1947, p. 30], we may distinguish
between games with complete information, here often to be called C-games, and games with incomplete information, to be called I-games. The latter differ from the former in the fact that the players, or at least some of them, lack full information about the basic mathematical structure of the game as defined by its normal form (or by its extensive form).

Yet, even though von Neumann and Morgenstern did distinguish between what I am calling C-games and I-games, their own theory (and virtually all work in game theory until the late 1960s) was restricted to C-games.

Lack of information about the mathematical structure of a game may take many different forms. The players may lack full information about the other players' (or even their own) payoff functions, about the physical or the social resources or about the strategies available to other players (or even to them themselves), or about the amount of information the other players have about various aspects of the game, and so on.

Yet, by suitable modelling, all forms of incomplete information can be reduced to the case where the players have less than full information about each other's payoff functions ${ }^{1} U_{i}$ defining the utility payoff $u_{i}=U_{i}(s)$ of each player i for any possible strategy combination $s=\left(s_{I}, . ., s_{n}\right)$ the n players may use.

TWO-PERSON I-GAMES

3. A model based on higher and higher-order expectations.

Consider a two-person I-game G in which the two players do not know each other's payoff functions. (But for the sake of simplicity I shall assume that they do know their own payoff functions.)

A very natural - yet as we shall see a rather impractical - model for analysis of this game would be as follows. Player 1 will realize that player 2's strategy s_{2} in this game will depend on player 2's own payoff function U_{2} Therefore, before choosing his own strategy s_{1}, player 1 will form some expectation $e_{1} U_{2}$ about the nature of U_{2}. By the same token, player 2 will form some expectation $e_{2} U_{1}$ about the nature of player l's payoff function U_{1}, These two expectations $e_{1} U_{2}$ and $e_{2} U_{1}$ I shall call the two players' first-order expectations.

Then, player 1 will form some second-order expectation $e_{1} e_{2} U_{1}$ about player 2's first-order expectation $e_{2} U_{1}$ whereas player 2 will form some second-order expectation $e_{2} e_{1} U_{2}$ about player 1's first-order expectation $e_{1} U_{2}$ and so on.

Of course, if the two players want to follow the Bayesian approach then their expectations will take the form of subjective probability distributions over the relevant mathematical objects. Thus, player l's first order expectation $e_{1} U_{2}$ will take the form of a subjective probability distribution $P_{1}{ }^{1}\left(U_{2}\right)$ over all possible payoff functions U_{2} that player 2 may possess. Likewise, player 2's first-order expectation $e_{2} U_{1}$ will take the form of a subjective probability distribution $P_{2}{ }^{1}\left(U_{1}\right)$ over all possible payoff functions U_{t} that player 1 may possess.

On the other hand, player 1's second-order expectation $e_{1} e_{2} U_{1}$ will take the
form of a subjective probability distribution $P_{1}{ }^{2}\left(P_{2}{ }^{1}\right)$ over all possible firstorder probability distributions $P_{2}{ }^{1}$ that player 2 may entertain. More generally, the kth-order expectation ($k>1$) of either player i will be a subjective probability distribution $P_{i}^{k}\left(P_{j}^{k-1}\right)$ over all the ($K-1$)-order subjective probability distributions P_{j}^{k-1} that the other player $\mathrm{j}(j \neq i)$ may have chosen. ${ }^{2}$

Of course, any model based on higher and higher-order expectations would be even more complicated in the case of n-person I-games (with $\mathrm{n}>2$). Even if we retain the simplifying assumption that each player will know his own payoff function, even then each player will still have to form ($n-1$) different first-order expectations, as well as $(n-1)^{2}$ different second-order expectations, and so on.

Yet, as we shall see, there is a much simpler and very much preferable approach to analyzing I-games, one involving only one basic probability distribution Pr (together with n different conditional probability distributions, all of them generated by this basic probability distribution Pr).

4. Arms control negotiations between the United States and the Soviet Union in the 1960s.

In the period 1965-69, the U.S. Arms Control and Disarmament Agency employed a group of about ten young game theorists as consultants. It was as a member of this group that I developed the simpler approach, already mentioned, to the analysis of I-games.

I realized that a major problem in arms control negotiations is the fact that each side is relatively well informed about its own position with respect to various variables relevant to arms control negotiations, such as its own policy objectives, its peaceful or bellicose attitudes toward the other side, its military strength, its own ability to introduce new military technologies, and so on - but may be rather poorly informed about the other side's position in terms of such variables.

I came to the conclusion that finding a suitable mathematical representation for this particular problem may very well be a crucial key to a better theory of arms control negotiations, and indeed to a better theory of all I-games.

Similar problems arise also in economic competition and in many other social activities. For example, business firms are almost always better informed about the economic variables associated with their own operations than they are about those associated with their competitors' operations.

Let me now go back to my discussion of arms control negotiations. I shall describe the American side as player I, and shall describe the Soviet side, which I shall often call the Russian side, as player 2.

To model the uncertainty of the Russian player about the true nature of the American player; i.e., about that of player I, I shall assume that there are K different possible types of player 1 , to be called types $t_{,}{ }^{1}, t_{1}{ }^{2}, \ldots, t_{1}{ }^{k}, \ldots, t_{1}{ }^{K}$. The Russian player, i.e., player 2 , will not know which particular type of player 1 will actually be representing the American side in the game.

Yet, this fact will pose a serious problem for the Russian player because his
own strategical possibilities in the game will obviously depend, often very strongly, on which particular type of the American player will confront him in the game. For each of the K possible types of this player might correspond to a very different combination of the possible characteristics of the American player - in terms of variables ranging from the true intentions of this American player to the availability or unavailability of powerful new military technologies to him, technologies sometimes very contrary to the Russian side's expectations. Moreover, different types of the American player might differ from each other also in entertaining different expectations about the true nature of the Russian player.

On the other hand, to model the uncertainty of the American player about the true nature of the Russian player i.e., about that of player 2, I shall assume that there are M different possible types of player 2, to be called types $t_{2}{ }^{1}, t_{2}{ }^{2}, \ldots, t_{2}{ }^{m}, \ldots, T_{2}{ }^{M}$. The American player, i.e., player 1, will not know which particular type of player 2 will actually represent the Russian side in the game.

Again, this fact will pose a serious problem for the American player because each of the M possible types of the Russian player might correspond to a very different combination of the possible characteristics of the Russian player. Moreover, different types of the Russian player might differ from each other also in entertaining different expectations about the true nature of the American player. ${ }^{3}$

5. A type-centered interpretation of I-games.

A C-game is of course always analyzed on the assumption that the centers of activity in the game are its players. But in the case of an I-game we have a choice between two alternative assumptions. One is that its centers of activity are its players, as would be the case in a C-game. The other is that its centers of activity are the various types of its players. The former approach I shall call a play-er-centered interpretation of this I-game, whereas the latter approach I shall call its type-centered interpretation.

When these two interpretations of any I-game are properly used, then they are always equivalent from a game-theoretic point of view. In my 1967-68 paper I used the player-centered interpretation of I-games. But in this paper I shall use their type-centered interpretation because now I think that it provides a more convenient language for the analysis of I-games.

Under this latter interpretation, when player 1 is of type $t_{1}{ }^{k}$, then the strategy and the payoff of player 1 will be described as the strategy and the payoff of this type $t_{1}{ }^{k}$ of player 1 rather than as those of player 1 as such. This language has the advantage that it enables us to make certain statements about type $t_{1}{ }^{\text {k }}$ without any need for further qualifications, instead of making similar statements about player I and then explaining that these statements apply to him only when he is of type $t_{1}{ }^{k}$. This language is for us also a useful reminder of the fact that in any I-game the strategy that a given player will use and the payoff he will receive will often strongly depend on whether this player is of one type or is of another type.

On the other hand, one must keep in mind that any statement about a given type $t_{1}{ }^{k}$ can always be retranslated into player-centered language so as to make it into a statement about player 1 when he is of type $t_{1}{ }^{k}$.

A type-centered language about player 2 when he is of some type $t_{2}{ }^{m}$ can be defined in a similar way.

6. The two active types and their payoff functions.

Suppose that player 1 is of type $t_{1}{ }^{k}$, whereas player 2 is of type $t_{2}{ }^{m}$. Then we shall say that the two players are represented by their types $t_{1}{ }^{k}$ and $t_{2}{ }^{m}$, and that these two types are the two active types in the game. In contrast, all types $t_{1}{ }^{k^{\prime}}$ with $k^{\prime} \neq k$ and all types $t_{2}{ }^{m^{\prime}}$ with $m^{\prime} \neq m$ will be called inactive types.

In a two-person C-game, the payoff of either player will depend only on the strategies used by the two players. In contrast, in a two-person I-game the payoffs $v_{1}{ }^{k}$ and $v_{2}{ }^{m}$ of the two active types $t_{1}{ }^{k}$ and $t_{2}{ }^{m}$ will depend not only on these two types' strategies $s_{1}{ }^{k}$ and $\mathrm{s}_{2}{ }^{m}$ (pure or mixed) but also on their types as indicated by the superscripts k and m in the symbols $t_{1}{ }^{k}$ and $t_{2}{ }^{m}$ denoting them. Thus, we may define their payoffs $v_{1}{ }^{k}$ and $v_{2}{ }^{m}$ as

$$
\begin{equation*}
v_{1}^{k}=V_{1}^{k}\left(s_{1}{ }^{k}, s_{2}{ }^{m} ; k, m\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{2}{ }^{m}=V_{2}{ }^{m}\left(s_{1}{ }^{k}, s_{2}{ }^{m} ; k, m\right) \tag{2}
\end{equation*}
$$

where $V_{1}{ }^{k}$ and $V_{2}{ }^{m}$ denote the payoff functions of $t_{1}{ }^{k}$ and of $t_{2}{ }^{m}$.
Yet, I shall call $V_{1}{ }^{k}$ and $V_{2}{ }^{m}$ conditional payoff functions because the payoff of type $t_{1}{ }^{k}$ will be the quantity $v_{1}{ }^{k}$ defined by (1) only if $t_{1}{ }^{k}$ is an active type in the game and if the other active type in the game is $t_{2}{ }^{m}$. Likewise, the payoff of type $t_{2}{ }^{m}$ will be the quantity ${r_{2}}^{m}$ defined by (2)only if $t_{2}{ }^{m}$ is an active type and $i f$ the other active type is $t_{1}{ }^{k}$.

More particularly, if either $t_{1}{ }^{k}$ or $t_{2}{ }^{m}$ is an inactive type then he will not be an actual participant of the game and, therefore, will not receive any payoff (or will receive only a zero payoff).

7. Who will know what in the game.

For convenience I shall assume that the mathematical forms of the two payoff functions $v_{1}{ }^{k}$ and $v_{2}{ }^{m}$ will be known to all participants of the game. That is to say, they will be known to both players and to all types of these two players.

On the other hand, I shall assume that player 1 will know which particular type $t_{1}{ }^{k}$ of his is representing him in the game. Likewise, player 2 will know which particular type $t_{2}{ }^{m}$ of his is representing him. In contrast, to model the uncertainty of each player about the true nature of the other player, I shall assume that neither player will know which particular type of the other player is representing the latter in the game.

In terms of type-centered language, these assumptions amount to saying that all types of both players will know that they are active types if they in fact are.

Moreover, they will know their own identities. (Thus, e.g., type $t_{1}{ }^{3}$ will know that he is $t_{1}{ }^{3}$, etc.) In contrast, none of the types of player 1 will know the identity of player 2 's active type $t_{2}{ }^{m}$; and none of the types of player 2 will know the identity of player 1 's active type $t,{ }^{k}$.

8. Two important distinctions.

As we have already seen, one important distinction in game theory is that between games with complete and with incomplete information, i.e., between Cgames and I-games. It is based on the amount of information the players will have in various games about the basic mathematical structure of the game as defined by its normal form (or by its extensive form). That is to say, it is based on the amount of information the players will have about those characteristics of the game that must have been decided upon before the game can be played at all.

Thus, in C-games all players will have full information about the basic mathematical structure of the game as just defined. In contrast, in I-games the players, or at least some of them, will have only partial information about it.

Another, seemingly similar but actually quite different, distinction is between games with perfect and with imperfect information. Unlike the first distinction, this one is based on the amount of information the players will have in various games about the moves that occurred at earlier stages of the game, i.e., about some events that occurred during the time when the game was actually played, rather than about some things decided upon before that particular time.

Thus, in games with perfect information, all players will have full information at every stage of the game about all moves made at earlier stages, including both personal moues and chance moves. ${ }^{4}$ In contrast, in games with imperfect information, at some stage(s) of the game the players, or at least some of them, will have only partial information or none at all about some move(s) made at earlier stages.

In terms of this distinction, chess and checkers are games with perfect information because they do permit both players to observe not only their own moves but also those of the other player.

In contrast, most card games are games with imperfect information because they do not permit the players to observe the cards the other players have received from the dealer, or to observe the cards discarded by other players with their faces down, etc.

Game theory as first established by von Neumann and Morgenstern, and even as it had been further developed up to the late 1960s was restricted to games with complete information. But from its very beginning, it has covered all games in that class, regardless of whether they were games with perfect or with imperfect information.

9. A probabilistic model for our two-person I-game G.

Up till now I have always considered the actual types of the two players, repre-
sented by the active pair $\left(t_{1}{ }^{k}, t_{2}{ }^{m}\right)$ simply as given. But now I shall propose to enrich our model for this game by adding some suitable formal representation of the causal factors responsible for the fact that the American and the Russian player have characteristics corresponding to those of (say) types $t_{1}{ }^{k}$ and $t_{2}{ }^{m}$ in our model.

Obviously, these causal factors can only be social forces of various kinds, some of them located in the United States, others in the Soviet Union, and others again presumably in the rest of the world.

Yet, it is our common experience as human beings that the results of social forces seem to admit only of probabilistic predictions. This appears to be the case even in situations in which we are exceptionally well informed about the relevant social forces: Even in such situations the best we can do is to make probabilistic predictions about the results that these social forces may produce.

Accordingly, I shall use a random mechanism and, more particularly, a lottery as a formal representation of the reluctant social forces, i.e., of the social forces that have produced an American society of one particular type (corresponding to some type $t_{1}{ }^{k}$ of our model), and that have also produced a Russian society of another particular type (corresponding to some type $t_{2}{ }^{m}$ of our model).

More specifically, I shall assume that, before any other moves are made in game G, some lottery, to be called lottery L, will choose some type $t_{1}{ }^{k}$ as the type of the American player, as well as some type $t_{2}{ }^{m}$ as the type of the Russian player. I shall assume also that the probability that any particular pair $\left(t_{1}{ }^{k},{k_{2}}^{m}\right)$ is chosen by this lottery L will be

$$
\begin{equation*}
\operatorname{Pr}\left(t_{1}^{k}, t_{2}^{m}\right)=p_{k m} \text { for } k=1, \ldots, \mathrm{~K} \text { and for } m=1, \ldots, M . \tag{3}
\end{equation*}
$$

As player 1 has K different possible types whereas player 2 has M different possible types, lottery L will have a choice among $H=K M$ different pairs of the form $\left(t_{1}{ }^{k}, t_{2}{ }^{m}\right)$. Thus, to characterize its choice behavior we shall need H different probabilities $p_{k m}$.

Of course, all these H probabilities will be nonnegative and will add up to unity. Moreover, they will form a $\mathrm{K} \times \mathrm{M}$ probability matrix $\left[p_{k m}\right.$], such that, for all possible values of k and of m, its $k t h$ row will correspond to type $t_{1}{ }^{k}$ of player 1 whereas its $m t h$ column will correspond to type $t_{2}{ }^{m}$ of player 2.

I shall assume also that the two players will try to estimate these H probabilities on the basis of their information about the nature of the relevant social forces, using only information available to both of them. In fact, they will try to estimate these probabilities as an outside observer would do, one restricted to information common to both players (cf. Harsanyi, 1967-68, pp. 176 - 177). Moreover, I shall assume that, unless he has information to the contrary, each player will act on the assumption that the other player will estimate these probabilities $p_{k m}$ much in the same way as he does. This is often called the common priors assumption (see Fudenberg and Tirole, 1991, p. 210).

Alternatively, we may simply assume that both players will act on the assumption that both of them know the true numerical values of these probabilities $p_{k m}$ - so that the common priors assumption will follow as a corollary.

The mathematical model we obtain when we add a lottery L (as just described) to the two-person I-game described in sections 4 to 7 will be called a probabilistic model for this I-game G. As we shall see presently, this probabilistic model will actually convert this I-game G into a C-game, which we shall call the game G^{*}.
10. Converting our I-game G with incomplete information into a game G^{*} with complete yet with imperfect information.
In this section, I shall be using player-centered language because this is the language in which our traditional definitions have been stated for games with complete and with incomplete information as well as for games with perfect and with imperfect information.

Let us go back to the two-person game G we have used to model arms control negotiations between the United States and the Soviet Union. We are now in a better position to understand why it is that, under our original assumptions about G , it will be a game with incomplete information.
(i) First of all, under our original assumptions, player 1 is of type $t_{1}{ }^{k}$, which I shall describe as Fact I, whereas player 2 is of type $t_{2}{ }^{m}$, which I shall describe as Fact II. Moreover, both Facts I and II are established facts from the very beginning of the game, and they are not facts brought about by some move(s) made during the game. Consequently, these two facts must be considered to be parts of the basic mathematical structure of this game G.
(ii) On the other hand, according to the assumptions we made in section 7, player 1 will know Fact I but will lack any knowledge of Fact II. In contrast, player 2 will know Fact II but will lack any knowledge of Fact I.

Yet, as we have just concluded, both Facts I and II are parts of the basic mathematical structure of the game. Hence, neither player 1 nor player 2 will have full information about this structure. Therefore, under our original assumptions, G is in fact a game with incomplete information.

Let me now show that as soon as we reinterpret game G in accordance with our probabilistic model, i.e., as soon as we add lottery L to the game, our original game G will be converted into a new game G^{*} with complete information. Of course, even after this reinterpretation, our statements under (ii) will retain their validity. But the status of Facts I and II as stated under (i) will undergo a radical change. For these two Facts will now become the results of a chance move made by lottery L during the game and, therefore, will no longer be parts of the basic mathematical structure of the game. Consequently, the fact that neither player will know both of these two Facts will no longer make the new game G^{*} into one with incomplete information.

To the contrary, the new game G^{*} will be one with complete information because its basic mathematical structure will be defined by our probabilistic model for the game, which will be fully known to both players.

On the other hand, as our statements under (ii) do retain their validity even in game G^{*}, the latter will be a game with imperfect information because both players will have only partial information about the pair $\left(t_{1}{ }^{k}, t_{2}{ }^{m}\right)$ chosen by the chance move of lottery L at the beginning of the game.
11. Some conditional probabilities in game G^{*}.

Suppose that lottery L has chosen type $t_{1}{ }^{k}$ to represent player 1 in the game. Then, according to our assumptions in section 7 , type $t_{1}{ }^{k}$ will know that he now has the status of an active type and will know that he is type $t_{1}{ }^{k}$. But he will not know the identity of the other active type in the game.

How should $t_{1}{ }^{k}$ now assess the probability that the other active type is actually a particular type $t_{2}{ }^{m}$ of player 2? He must assess this probability by using the information he does have, viz. that $h e$, type $t_{1}{ }^{k}$, is one of the two active types. This means that he must assess this probability as being the conditional probability ${ }^{5}$

$$
\begin{equation*}
\pi_{1}{ }^{k}(m)=\operatorname{Pr}\left(t_{2}{ }^{m} \mid t_{1}{ }^{k}\right)=p_{k m} / \sum_{k=1}^{K} p_{k m} . \tag{4}
\end{equation*}
$$

On the other hand, now suppose that lottery L has chosen type $t_{2}{ }^{m}$ to represent player 2 in the game. Then, how should $t_{2}{ }^{m}$ assess the probability that the other active type is a particular type $t_{1}{ }^{k}$ of player 1 ? By similar reasoning, he should assess this probability as being the conditional probability

$$
\begin{equation*}
\pi_{2}^{m}(k)=\operatorname{Pr}\left(t_{1}^{k} \mid t_{2}^{m}\right)=p_{k m} / \sum_{m=1}^{M} p_{k m} \tag{5}
\end{equation*}
$$

12. The semi-conditional payoff functions of the two active types.

Suppose the two active types in the game are $t_{1}{ }^{k}$ and $t_{2}{ }^{m}$. As we saw in section 6 , under this assumption, the payoffs $v_{1}{ }^{k}$ and $v_{2}{ }^{m}$ of these two active types will be defined by equations (1) and (2).

Note, however, that this payoff $v_{1}{ }^{k}$ defined by (1) will not be the quantity that type $t_{1}{ }^{k}$ will try to maximize when he chooses his strategy $s_{1}{ }^{k}$. For he will not know that his actual opponent in the game will be type $t_{2}{ }^{m}$. Rather, all he will know is that his opponent in the game will be one of player 2's M types. Therefore, he will choose his strategy $s_{1}{ }^{k}$ so as to protect his interests not only against his unknown actual opponent $t_{2}{ }^{m}$ but rather against all M types of player 2 because, for all he knows, any of them could be now his opponent in the game.

Yet, type $t_{1}{ }^{k}$ will know that the probability that he will face any particular type $t_{2}{ }^{m}$ as opponent in the game will be equal to the conditional probability $\pi_{1}{ }^{k}(m)$ defined by (4). Therefore, the quantity that $t_{t}{ }^{k}$ will try to maximize is the expected value $u_{1}{ }^{k}$ of the payoff $v_{1}{ }^{k}$ which can be defined as

$$
\begin{equation*}
u_{1}{ }^{k}=U_{1}{ }^{k}\left(s_{1}{ }^{k}, s_{2}{ }^{*}\right)=\sum_{m=1}^{M} \pi_{1}{ }^{k}(m) V_{1}{ }^{\mathrm{k}}\left(s_{1}{ }^{k}, s_{2}{ }^{m} ; k, m\right) \tag{6}
\end{equation*}
$$

Here the symbol $\mathrm{s}_{2}{ }^{*}$ stands for the strategy M-tuple ${ }^{6}$

$$
\begin{equation*}
s_{2}^{*}=\left(s_{2}{ }^{1}, s_{2}^{2}, \ldots, s_{2}{ }^{\mathrm{m}}, \ldots, s_{2}^{M}\right) \tag{7}
\end{equation*}
$$

I have inserted the symbol $s_{2}{ }^{*}$ as the second argument of the function $U_{1}{ }^{k}$ in order to indicate that the expected payoff $u_{1}{ }^{k}$ of type $t_{1}{ }^{k}$ will depend not only on the strategy $s_{2}{ }^{m}$ that his actual unknown opponent $t_{2}{ }^{m}$ will use but rather on the strategies $s_{2}{ }^{l}, \ldots, s_{2}{ }^{M}$ that anyone of his M potential opponents $t_{2}{ }^{1}, \ldots, t_{2}{ }^{M}$ would use in case he were chosen by lottery L as $t_{1}{ }^{k, s}$ opponent in the game.

By similar reasoning, the quantity that type $t_{2}{ }^{m}$ will try to maximize when he chooses his strategy $s_{2}{ }^{m}$ will not be his payoff $v_{2}{ }^{m}$ defined by (2). Rather, it will be the expected value $u_{2}{ }^{m}$ of this payoff $v_{2}{ }^{m}$, defined as

$$
\begin{equation*}
u_{2}{ }^{m}=U_{2}{ }^{m}\left({\left.s_{1}^{*}, s_{2}{ }^{m}\right)=\sum_{k=1}^{K} \pi_{2}^{m}(k) V_{2}^{m}\left(s_{1}^{k}, s_{2}^{m} ; k, m\right)}^{k}\right. \tag{8}
\end{equation*}
$$

Here the symbol $\mathrm{s}_{1}{ }^{*}$ stands for the strategy K-tuple

$$
\begin{equation*}
s_{1}^{*}=\left(s_{1}{ }^{1}, s_{1}^{2}, \ldots, s_{1}^{k}, \ldots, s_{1}^{K}\right) . \tag{9}
\end{equation*}
$$

Again, I have inserted the symbol $s_{1}{ }^{*}$ as the first argument of the function $U_{2}{ }^{m}$ in order to indicate that the expected payoff of type $t_{2}{ }^{m}$ will depend on all K strategies $s_{1}{ }^{1}, \ldots, s_{1}{ }^{K}$ that anyone of the K types of player 1 would use against him in case he were chosen by lottery L as $t_{2} \mathrm{~m}_{\mathrm{s}} \mathrm{s}$ opponent in the game.

As distinguished from the conditional payoff functions $V_{1}{ }^{k}$ and $V_{2}{ }^{m}$ used in (1) and (2), the payoff functions U_{1}^{k} and $U_{2}{ }^{m}$ used in (6) and in (8) I shall describe as semi-conditional. For $V_{1}{ }^{k}$ and $V_{2}{ }^{m}$ define the payoff $v_{1}{ }^{k}$ or $v_{2}{ }^{m}$ of the relevant type as being dependent on the two conditions that
(a) He himself must have the status of an active type and that
(b) The other active type in the game must be a specific type of the other player.
In contrast, $U_{1}{ }^{\mathrm{k}}$ and $U_{2}{ }^{m}$ define the expected payoff $u_{1}{ }^{k}$ or $u_{2}{ }^{m}$ of the relevant type as being independent of condition (b) yet as being dependent on condition (a). (For it will still be true that neither type will receive any payoff at all if he is not given by lottery L the status of an active type in the game.)

As we saw in section 10, once we reinterpret our original I-game G in accordance with our probabilistic model for it, G will be converted into a Cgame G^{*}. Yet, under its type-centered interpretation, this C-game G^{*} can be regarded as a $(K+M)$-person game whose real "players" are the K types of player 1 and the M types of player 2, with their basic payoff functions being the semi-conditional payoff functions $U_{1}{ }^{k}(\mathrm{k}=1, \ldots, \mathrm{~K})$ and $U_{2}{ }^{m}(\mathrm{ml}, \ldots, M)$.

If we regard these $(\mathrm{K}+\mathrm{M})$ types as the real "players" of G^{*} and regard these payoff functions $U_{1}{ }^{k}$ and $U_{2}{ }^{m}$ as their real payoff functions, then we can easily define the Nash equilibria7 of this C-game G*. Then, using a suitable theo-
ry of equilibrium selection, we can define one of these equilibria as the solution of this game.

N-PERSON I-GAMES

13. The types of the various players, the active set, and the appropriate sets in n-person I-game. 5
Our analysis of two-person I-games can be easily extended to n-person Igames. But for lack of space I shall have to restrict myself to the basic essentials of the n-person theory.

Let N be the set of all n players. I shall assume that any player $\mathrm{i}(\mathrm{i}=1, \ldots, \mathrm{n})$ will have K_{i} different possible types, to be called $t_{i}{ }^{1}, \ldots, t_{i}{ }^{k}, \ldots, t_{i}{ }^{K i}$. Hence, the total number of different types in the game will be

$$
\begin{equation*}
Z=\sum_{i \in N} K_{i} . \tag{10}
\end{equation*}
$$

Suppose that players $1, \ldots, i, \ldots, n$ are now represented by their types $t_{1}{ }^{k}, \ldots, t_{i}{ }_{i}{ }_{i}, \ldots, t_{n}{ }_{n}$ in the game. Then, the set of these n types will be called the active set. \bar{a}

Any set of n types containing exactly one type of each of the n players could in principle play the role of an active set. Any such set will be called an appropriate set. As any player i has K_{i} different types, the number of different appropriate sets in the game will be

$$
\begin{equation*}
H=\prod_{i \in N} K_{i} \tag{11}
\end{equation*}
$$

I shall assume that these H appropriate sets a will have been numbered as

$$
\begin{equation*}
a_{1}, a_{2}, \ldots, a_{h}, \ldots, a_{H} \tag{12}
\end{equation*}
$$

Let A_{i}^{k} be the family of all appropriate sets containing a particular type $t_{i}{ }^{k}$ of some player i as their member The number of different appropriate sets in $A_{i}{ }^{k}$ will be

$$
\begin{equation*}
a(i)=\prod_{\substack{j \in N \\ j \neq i}} K_{j}=H \mid K_{j} . \tag{13}
\end{equation*}
$$

Let B_{i}^{k} be the set of all subscripts h such that $\mathrm{a}_{\mathrm{h}} \mathrm{is}$ in $A_{i}{ }^{k}$. As there is a one-toone correspondence between the members of $A_{i}{ }^{k}$ and the members of $B_{i}{ }^{k}$, this set $B_{i}{ }^{k}$, will likewise have $\alpha(i)$ different members.
14. Some probabilities.

I shall assume that, before any other moues are made in game G^{*}, some lottery L will choose one particular appropriate set a to be the active set \bar{a} of the game. The n types in this set \bar{a} will be called active types whereas all types not in \bar{a} will be called inactive types.

I shall assume that the probability that a particular appropriate set a_{h} will be chosen by lottery L to be the active set \bar{a} of the game is

$$
\begin{equation*}
\operatorname{Pr}\left(\bar{a}=a_{h}\right)=r_{h} \text { for } h=1, \ldots, H . \tag{14}
\end{equation*}
$$

Of course, all these H probabilities r_{h} will be nonnegative and will add up to unity. Obviously, they will correspond to the H probabilities $p_{k m}$ [defined by (3)] we used in the two-person case.

Suppose that a particular type t_{i}^{k} of some player i has been chosen by lottery L to be an active type in the game. Then, under our assumptions, he will know that he is type t_{i}^{k} and will know also that he now has the status of an active type. In other words, t_{i}^{k} will know that

$$
\begin{equation*}
t_{i}^{k} \in \bar{a} . \tag{15}
\end{equation*}
$$

Yet, the statement $t_{i}^{k} \in \bar{a}$ implies the statement

$$
\begin{equation*}
\bar{a} \in \mathrm{~A}_{i}^{k} \tag{16}
\end{equation*}
$$

and conversely, because $\mathrm{A}_{i}{ }^{k}$ contains exactly those appropriate sets that have type $\mathrm{t}_{i}{ }^{k}$ as their member: Thus, we can write

$$
\begin{equation*}
\left(l_{i}^{k} \in \bar{a}\right) \leftrightarrow\left(\bar{a} \in \mathrm{~A}_{i}^{k}\right) . \tag{17}
\end{equation*}
$$

We have already concluded that if type t_{i}^{k} has the status of an active type then he will know (15). We can now add that in this case he will know also (16) and (17). On the other hand, he can also easily compute that the probability for lottery L to choose an active set \bar{a} belonging to the family $\mathrm{A}_{i}{ }^{k}$ is

$$
\begin{equation*}
\operatorname{Pr}\left(\bar{a} \in \mathrm{~A}_{i}^{k}\right)=\sum_{h \in B_{i}^{k}} r_{h} . \tag{18}
\end{equation*}
$$

In view of statements (15) to (18), how should this type $t_{i}{ }^{k}$ assess the probability that the active set \bar{a} chosen by lottery L is actually a particular appropriate set a,? Clearly, he should assess this probability as being the conditional probability

$$
\begin{equation*}
\pi_{i}^{k}(h)=\operatorname{Pr}\left(\bar{a}=a_{h} \mid t_{l} k \in \bar{a}\right. \tag{19}
\end{equation*}
$$

Yet, in view of (17) and (18), we can write

$$
\begin{align*}
& \operatorname{Pr}\left(\bar{a}=a_{h} \mid t_{i}^{k} \in \bar{a}\right)=\operatorname{Pr}\left(\bar{a}=a_{h} \mid \bar{a} \in A_{\mathrm{i}}^{\mathrm{k}}\right)= \\
& \quad=\operatorname{Pr}\left(\bar{a}=a_{h} / \operatorname{Pr}\left(\bar{a} \in A_{\mathrm{i}}^{\mathrm{k}}\right)=r_{h} / \sum_{h \in R_{i}^{k}} r_{h} .\right. \tag{20}
\end{align*}
$$

Consequently, by (19) and (20) the required conditional probability is

$$
\begin{equation*}
\pi_{i}^{k}(h)=r_{h} / \sum_{h \in B^{k}} r_{h} \tag{21}
\end{equation*}
$$

15. Strategy profiles.

Suppose that the K_{i} types $t_{i}^{1}, \ldots, t_{i}^{k}, \ldots, t_{i}^{K_{i}}$ of player i would use the strategies $s_{i}{ }^{1}, \ldots, s_{i}^{k}, \ldots, s_{i}{ }^{K}$ (pure or mixed) in case they were chosen by lottery L to be active types in the game. (Under our assumptions, inactive types do not actively participate in the game and, therefore, do not choose any strategies.) Then I shall write

$$
\begin{equation*}
s_{i}^{*}=\left(s_{i}^{1}, \ldots, s_{i}^{k}, \ldots, s_{i}^{\mathrm{K}_{i}}\right) \text { for } i=1, \ldots, n \tag{22}
\end{equation*}
$$

to denote the strategy profile ${ }^{8}$ of the K_{i} types of player i.

Let

$$
\begin{equation*}
s^{*}=\left(s_{i}^{*}, \ldots, s_{n}^{*}\right) \tag{23}
\end{equation*}
$$

be the ordered set we obtain if we first list all K_{1} strategies in $\mathrm{s}_{1}{ }^{*}$, then all K_{2} strategies in $\mathrm{s}_{2}{ }^{*}, \ldots$, then all K_{1} strategies in $s_{\mathrm{i}}{ }^{*}$,., and finally all K_{n} strategies in $s_{n}{ }^{*}$. Obviously, s^{*} will be a strategy profile of all types in the game. In view of (10), s* will contain Z different strategies.

Finally, let $s^{*}(h)$ denote the strategy profile of the n types belonging to a particular appropriate set a_{h} for $h=1, \ldots, H$.

16. The conditional payoff functions.

Let a_{h} be an appropriate set defined as

$$
\begin{equation*}
a_{h}=\left(t_{1}^{k_{1}}, \ldots, t_{i}^{k_{i}}, \ldots, t_{n}^{k_{n}}\right) \tag{24}
\end{equation*}
$$

The characteristic vector $c(h)$ for a_{h} will be defined as the n-vector

$$
\begin{equation*}
c(h)=\left(k_{1}, \ldots, k_{i}, \ldots, k_{n}\right) \tag{25}
\end{equation*}
$$

Suppose that this set a_{h} has been chosen by lottery L to be the active set \bar{a} of the game, and that some particular type t_{i}^{k} of player i has been chosen by
lottery L to be an active type. This of course means that $t_{i}{ }^{k}$ must be a member of this set a_{k}, which can be the case only if type t_{i}^{k} is identical to type $t_{i}^{k_{i}}$ listed in (24), which implies that we must have $k=k_{i}$

Yet, if all these requirements are met, then this set a_{n} and this type t_{i}^{k} together will satisfy all the statements (14) to (21).

As we saw in section 6 , the payoff v_{i}^{k} of any active type t_{i}^{k} will depend both

1. On the strategies used by the n active types in the game, and
2. On the identities of these active types.

This means, however, that t_{i}^{k},s payoff v_{i}^{k} will depend on the strategy profile $s^{*}(h)$ defined in the last paragraph of section 15, and on the characteristic vector $c(h)$ defined by (25).

Thus, we can write

$$
\begin{equation*}
v_{i}^{k}=V_{i}^{k}\left(s^{*}(h), c(h)\right) \text { if } t_{i}^{k} \in \bar{a}=a_{h} . \tag{26}
\end{equation*}
$$

The payoff functions $V_{i}^{k}\left(i=1, \ldots, n ; k=1, \ldots K_{i}\right)$ I shall call conditional payoff functions. Firstly, any given type will obtain the payoff v_{i}^{k} defined by (26) only if he will be chosen by lottery L to be an active type in the game. (This is what the condition $t_{i}^{k} \in \bar{a}$ in (26) refers to.)

Secondly, even if $t_{i}{ }^{k}$ is chosen to be an active type, (26) makes his payoff $v_{i}{ }^{k}$ dependent on the set a, chosen by lottery L to be an active set \bar{a} of the game.

17. Semi-conditional payoff functions.

By reasoning similar to that we used in section 12, one can show that the quantity any active type $t_{i}{ }^{k}$ will try to maximize will not be his payoff $v_{i}{ }^{k}$ defined by (26). Rather, it will be his expected payoff; i.e., the expected value $u_{i}{ }^{k}$ of his payoff v_{i}^{k}.
We can define u_{i}^{k} as

$$
\begin{equation*}
u_{i}^{k}=U_{i}^{k}\left(\mathrm{~s}^{*}\right)=\sum_{h=1}^{H} \pi_{i}^{k}(h) V_{i}^{k}\left(s^{*}(h), c(h)\right) \text { if } t_{i}^{k} \in \bar{a} . \tag{27}
\end{equation*}
$$

These payoff functions $U_{i}^{k}\left(i=1, \ldots, n ; k=1, \ldots, K_{i}\right)$ I shall call semi-conditional. I shall do so because they are subject to the first condition to which the payoff functions $V_{i}{ }^{k}$ are subject but not to the second. That is to say, any given type $t_{i}{ }^{k}$ will obtain the expected payoff u_{i}^{k} defined by (27) only if he is an active type of the game. But, if he is, then his expected payoff $u_{i}{ }^{k}$ will not depend on which particular appropriate set a_{h} has been chosen by lottery L to be the active set \bar{a} of the game.

It is true also in the n-person case that if an I-game is reinterpreted in accordance with our probabilistic model then it will be converted into a C-game G^{*}.

Moreover, this C-game G^{*}, under its type-centered interpretation, can be regarded as a Z-person game whose "players" are the Z different types in the
game. As the payoff function of each type $t_{i}{ }^{k}$ we can use his semi-conditional payoff function $U_{i}{ }^{k}$.

Using these payoff functions $U_{i}{ }^{k}$, it will be easy to define the Nash equilibria (Nash, 1951) of this Z-person game, and to choose one of them as its solution on the basis of a suitable theory of equilibrium selection.
${ }^{1}$ See Harsanyi, 1967-68 (pp. 167-168).
${ }^{2}$ The subjective probability distributions of various orders discussed in this section all are probability distributions over function spaces, whose proper mathematical definition poses some well - known technical difficulties. Yet, as Aumann (1963 and 1964) has shown, these difficulties can be overcome. But even so, the above model of higher and higher-order subjective probability distributions remains a hopelessly cumbersome model for analysis of I-games.
${ }^{3}$ Let $\pi_{l}^{k}(m)$ for $\mathrm{m}=1, \ldots, M$ be the probability that some type t_{1}^{k} of player 1 assigns to the assumption that the Russian side will be represented by type $t_{2}{ }^{m}$ in the game. According to Bayesian theory, the M probabilities $\pi_{t}^{k}(1), \pi_{t}^{k}(2), \ldots \pi_{i}^{k}(m), \ldots, \pi_{f}^{k}(M)$ will fully characterize the expectations that this type t_{1}^{k} entertains about the characteristics of player 2 in the game. On the other hand, as we shall see, the probabilistic model we shall propose for the game will imply that these probabilities $\pi_{1}^{k}(m)$ must be equal to certain conditional probabilities so that

$$
\pi_{1}^{k}(m)=\operatorname{Pr}\left(t_{2}^{m} \mid t_{1}^{k}\right) \text { for } m=1, \ldots, M
$$

A similar relationship will obtain between the K [probabilities $\pi_{2}{ }^{m}(k)$ entertained by any given type t_{2}^{m} of player 2 and the conditional probabilities $\operatorname{Pr}\left(t_{1}^{1} \mid l_{2}{ }^{m}\right)$ for $k=1, \ldots, K$
"Personal moves are moves the various players have chosen to make. Chance moves are moves made by some chance mechanism, such as a roulette wheel. Yet, moves made by some players yet decided by chance, such as throwing a coin, or a shuffling of cards, can also count as chance moves.
${ }^{5} \mathrm{Cf}$. footnote 3 to section 4 above.
${ }^{6}$ Using player-centered language, in Harsanyi (1967-68, p. 180), I called the M-tuple $\mathrm{s}_{2}{ }^{*}$ and the K-tuple s_{1}^{*} (see below), the normalized strategies of player 2 and player 1, respectively.
${ }^{7}$ As defined by John Nash in Nash (1951). But he actually called them equilibrium points.
${ }^{8}$ In Harsanyi, 1967-68, I called a strategy combination such as S_{i}^{*} the normalized strategy of player i (cf. Footnote 6 to section 12 above).

REFERENCES

Aumann, Robert J. 1963. "On Choosing a Function at Random." In Fred B. Wright (ed.), Symposium on Ergodic Theory, 1-20. New Orleans: Academic Press.
Aumann, Robert J. 1964. "Mixed and Behavior Strategies in Infinite Extensive Games." In M. Dresher, L.S. Shapley, and A.W. Tucker (eds.), Advances in Game Theory, 627-650. Princeton: Princeton University Press.
Fudenberg, Drew, and Tirole, Jean. 1991. Game Theory. Cambridge. MA: Cambridge University Press.
Harsanyi, John C. 1967-68. "Games with Incomplete Information Played by Bayesian Players." Management Science 14, 159-182, 320-334, and 486-502.
Nash, John F. 1951. "Noncooperative Games." Annals of Mathematics 54, 289-295.
von Neumann, John, and Morgenstern, Oskar. 1944, 1947. Theory of Games and Economic Behavior Princeton: Princeton University Press.

SELECTED LIST OF PUBLICATIONS

A. BOOKS:

Essays on Ethics, Social Behavior, and Scientific Explanation. With Foreword by Kenneth J. Arrow. Dordrecht, Holland: D. Reidel, 1976. xvi + 262 pp.

Rational Behavior and Bargaining Equilibrium in Games and Social Situations. Cambridge, England: Cambridge University Press, 1977. x + 314 pp.
Papers in Game Theory. Dordrecht, Holland: D. Reidel, 1982. xii + 258 pp.
A General Theory of Equilibrium Selection in Games (joint work with Reinhard Selten).
With Foreword by Robert Aumann. Cambridge, MA: MIT Press, 1988. xiv +378.

B. SELECTED JOURNAL ARTICLES:

"Cardinal Utility in Welfare Economics and in the Theory of Risk-taking," Journal of Political Economy, 61 (1953), 434-435.
"Welfare Economics of Variable Tastes," Review of Economic Studies, 21 (1953-54), 204 -213.
"Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility," Journal of Political Economy, 63 (1955), 309-321.
"Approaches to the Bargaining Problem Before and After the Theory of Games: A Critical Discussion of Zeuthen's Hicks's and Nash's Theories," Econometrica, 24 (1956), 144-157.
"Ethics in Terms of Hypothetical Imperatives," Mind, 67 (1958), 305-316.
"Measurement of Social Power, Opportunity Costs, and the Theory of Two-Person Bargaining Games," Bahavioral Science, 7 (1962), 67-80.
"Measurement of Social Power in n-Person Reciprocal Power Situations," Behavioral Science, 7 (1962), 81-91.
"A Simplified Bargaining Model for the n-Person Cooperative Game," International Economic Review, 4 (1963), 194-220.
"A Bargaining Model for Social Status in Informal Groups and Formal Organizations," Behavioral Science, 11 (1966), 357-369.
"Games with Incomplete Information Played by 'Bayesian' Players," Parts I to III, Management Science, 14 (1967-68), pp. 159-182, 320-334, and 486-502.
"Rational-Choice Models of Political Behavior vs. Functionalist and Conformist Theories," World Politics, 21 (1969), 513-538.
"Games with Randomly Disturbed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points," International Journal of Game Theory, 2 (1973), 1-23.
"Oddness of the Number of Equilibrium Points: A New Proof," International Journal of Game Theory, 2 (1973), 235-250.
"An Equilibrium-Point Interpretation of Stable Sets and a Proposed Alternative Definition," Management Science, 20 (1974), 1472-1495.
"Can the Maximin Principle Serve as a Basis for Morality? A Critique of John Rawls's Theory," American Political Science Review, 69 (1975), 594-606.
"Nonlinear Social Welfare Functions: Do Welfare Economists Have a Special Exemption from Bayesian Rationality?" Theory and Decision, 6 (1975), 311-332.
"The Tracing Procedure: A Bayesian Approach to Defining a Solution for n-Person
Noncooperative Games, International Journal of Game Theory, 4 (1975), 61-94.
"Rule Utilitarianism and Decision Theory," Erkenntnis, 11 (1977), 25-53.
"Advances in Understanding Rational Behavior." In R. E. Butts and J. Hintikka (eds.), Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, Part II. Dordrecht, Holland: D. Reidel, 1977, 315-343.
"Rationality, Reasons, Hypothetical Imperatives, and Morality," in Hal Berghel et al., Wittgenstein, the Vienna Circle, and Critical Rationalism. Vienna, Austria: Verlag Hoelder - Pichler - Tempsky, 1979, 463-475.
"Bayesian Decision Theory, Rule Utilitarianism, and Arrow's Impossibility Theorem," Theory and Decision, 11 (1979), 289-317.
'*Mathematics, the Empirical Facts, and Logical Necessity," Erkenntnis, 19 (1983), 167192.
"Bayesian Decision Theory, Subjective and Objective Probabilities, and Acceptance of Empirical Hypotheses," Synthese, 57 (1983), 341-365.
"Acceptance of Empirical Statements: A Bayesian Theory Without Cognitive Utilities," Theory and Decision, 18 (1985), 1-30.
"Rule Utilitarianism, Equality, and Justice," Social Philosophy and Policy, 2 (1985), 115-127.
"Does Reason Tell Us What Moral Code to Follow, and Indeed, to Follow Any Moral Code at All?" Ethics, 96 (1985), 42-55.
"Utilitarian Morality in a World of Very Half-Hearted Altruists." In W. P. Heller et al. (eds.), Social Choice and Public Decision Making: Essays in Honor of K. J. Arrow, Vol. I Cambridge, England: Cambridge University Press, 1986, pp. 57-73.
"Von Neumann-Morgenstern Utilities, Risk Taking, and Welfare." In G. R. Feiwel (ed.), Arrow and the Ascent of Modern Economic Theory. New York: New York University Press, 1987, pp. 545-558.
"Assessing Other People's Utilities," in B. E. Munier (ed.), Risk, Decision, and Rationality. Dordrecht, Holland: D. Reidel, 1988, pp. 127-138.
"Problems with Act Utilitarianism and Malevolent Preferences." A Critique of Richard Hare's Theory. In D. Seanor and N. Fotion (eds.), Hare and Critics. Oxford, England: Clarendon Press, 1988, pp. 89-99.
"Equality, Responsibility, and Justice As Seen from a Utilitarian Perspective," Theory and Decision, 31 (1991), 141-158.
"Game and Decision Theoretic Models in Ethics." In R. J. Aumann and S. Hart (eds.), Handbook of Game Theory, Vol. 1. Amsterdam, The Netherlands: Elsevier (NorthHolland), 1992; Chapter 19.

