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     Do all cells in the body 
 have the same sets of genes?    
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Efficiency of nuclear reprogramming by nuclear transfer to eggs 

Switch between cell-types: 
e.g. intestinal epithelium to muscle and nerve.  

First nuclear transfers……………..……..…15% 

Serial nuclear transfers…………..………..….7% 

Grafts from nuclear transfer embryos……….8% 

30% Total: 



Wilmut,  Campbell et al 1996 and 1997.  
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Mammalian nuclear transfers 
    

Xenopus nuclear transplants 
      reaching feeding tadpole stage 

Nuclear transfer success decreases as donor cells differentiate 

reaching birth 
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Derivation of functional heart from adult monkey skin 
(Byrne et al., 2008) 
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Epigenetic memory 
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   Embryos derived from muscle nuclei remember 
 their origin even in their nerve and endoderm cells    

No transcription 
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of 

56% 

52% 

genes 

Transcription 

transfer 

Nature Cell Biol. 2006 
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H3.3 is required for epigenetic memory. 
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 H3.3-E4 
mutant 
mRNA 

K4, methylatable lysine. 

E4, gutamine 



EPIGENETIC MEMORY 

Can be explained if: 

1.   H3.3 promotes continuing transcription of active genes,   and if 

2.   Egg cytoplasm  reverses gene transcription with a 50% efficiency. 



First meiotic prophase oocytes 

to analyse the mechanism of nuclear reprogramming 
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     Replication errors in 
Transplanted somatic nuclei 

Postzygotic 

Single nuclear transfer to eggs 
in second meiotic metaphase 



Incomplete DNA replication 

damages somatic nuclei  

transplanted to eggs 
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Multiple nuclei transferred to growing oocytes 
               in first meiotic prophase      
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Xenopus oocyte and germinal vesicle 

GV 

1 mm 
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 Mammalian stem cell genes are rapidly activated 
 in mammalian nuclei transplanted to Xenopus oocytes  
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nuclei 
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Nuclei of differentiated cells are reprogrammed slowly. 

Sox2 



      

Oocyte transcription assay 
   



        Living oocyte transcription assay 
 
 
1. Multiple somatic nuclei in one oocyte. 

 
2. Linear accumulation of new transcripts. 

 
3. Multiple initiations of transcription per gene per day. 

 
 
 
 

 
 

4.   Oocyte injections show resistance 



      

   
Transcriptional activation: 

 attack by egg cytoplasm 
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pronucleus 

pronucleus 

HFertilized mouse egg Mouse sperm 



Mammalian 
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nuclei 
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nuclear 
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Histone replacement in transplanted nuclei. 
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nuclei in 
oocyte GV 

H1o histone-GFP 
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oocyte 
B4 histone-RFP 
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 Uptake of linker histone and pol II correlates with reprogramming 

Linker histone B4 
(oocyte origin) 
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(unphosphorylated) 
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(serine 5 phosph.) 
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YFP-RPB1 
(RNA polymerase) 
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(TATA-binding protein 

of somatic cells) 

TBP2 -cherry 
(TATA-binding protein 
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Uptake and loss of chromosomal proteins  
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Time sequence of polymerase II components binding to genes 
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Resistance to reprogramming: 

   defence by the nucleus 



Repressed Xi in female mammals 
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 MacroH2A helps to explain 
resistance to reprogramming 

MacroH2A is knocked down by inhibitory RNA, 

and induces Oct4 and Sox2 in MEF-Xi cells.  



Conclusion 

macroH2A marks embryonic 

differentiation and acts as an 

epigenetic resistance to nuclear 

reprogramming 

Presenter
Presentation Notes
required to maintain the high stability of the differentiated state
Xenopus NT + iPS as tools



Selective gene transcription 48 hours after 
nuclear transfer to Xenopus oocytes 
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3368  (21%)   

1176  (7%) 

3805  (23%)   

7890  (49%) 

Numbers (%) of genes 



Resistance is gene and cell-type specific 



Chromatin modification 



Nil  U16 

H3K27me3 H3K9me2/3 

Histone H3 Histone H3 Histone H3 

Histone modifications in nuclei can be changed 
after transfer to oocytes 

H2AUb 

Inject mRNs on day 1.   Transplant nuclei on day 2. 
Reisolate transplanted nuclei on day 3 for Western analysis 

Nil   K6b Nil   K4D 

K6b, H3K27me3,  H3K27 demethylase. 

K4D,  H3K9 demethylase. 

U116, H2A deubiquitinase. 

mRNAs: 



DAPI H3K9Me3 

No 
 overexpression 

Histone modifiers overexpressed in the oocyte efficiently 
modify transplanted nuclei chromatin 
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HA-histone 
demethylase 

methylation 
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Loss of HP1 alpha binding to transplanted chromatin after 
lysine demethylase overexpression 
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Chromatin depletion 
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RNA RNA 
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Normal        RNA 
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  Oct4.  Pluripotency. 
Thymus nuclei 

 560 

1  2  3  4 1  2  3  4 
Days 

Normal        RNA 
_ 

Thymus nuclei 

1000 

Resistance of nuclei transplanted to oocytes 
RNA depletion from donor nuclei does not affect rate or extent of reprogramming 

Sox2.     Pluripotency. 
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R. Halley-Stott 

Protein depletion in somatic nuclei removes 
memory and  enhances transcription 



P 
Protein  
removal 
from  
nuclei 
by salt 
and Triton 
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C2C12 ES  

   

HMG                10            10             3               1 
EED                  10            10             8               0   
BMi1               10            10             5               0 

HP!                  10             10            9               0 
Brg1                 10             10            6               1 

H2A                 10              10           10           10     

chromosomal  
proteins 

Resistance to reprogramming is maintained 
at high salt concentrations 

Levels of 

Pol II                10             10             9              0  
after salt 
treatment 



The battle for supremacy 

The egg The nucleus 

Designed to transform 
sperm to an embryo  

active nucleus 

Designed to maintain 
the same pattern of 
 gene expression 

Tries to do the same 
for somatic nuclei 

Tries to resist 
any change 



Prospects 

To defeat resistance  and win 

efficient cell replacement 
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Sperm cell Embryonic cell Specialised cell 

Images from 
Dr Kei Miyamoto 
Marta Teperek 

99% 35% 1% 

% of normal development after nuclear transfer (to a feeding tadpole) 

A sperm nucleus is specially designed to yield normal 
development 



Conclusions 

 
 
 
 
 
 
 
 
 
 
 
 

          

2.    
2.   Stable comitment can be reversed by nuclear 
          transfer to eggs. 

3. Nuclei from diferentiated cells show a strong 
           resistance to reprogramming.   

4. Resistance  is strongly cell-type and gene specific. 
 

5. Resistance depends  on histone modifications and on   
         other stable  chromosomal components.   

 
. 

1.   Some cells (endoderm) undergo a very early stable 
          commitment to their lineage pathway. 
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Single nuclear transfer to unfertilized eggs 
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Multiple somatic nuclei Germinal 
vesicle FRAP 

GV isolation 

Fluorescence recovery after photobleaching 

Germinal vesicle 
with 

injected nuclei 

To determine the exchange rate of a defined protein  
in transplanted nuclei 
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Time after nuclear transfer 
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Pol II total 

Pol II Ser 2 

DAPI 

Increase in polymerase II after nuclear transfer 
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Oct4 coding region 
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Sox2RR2 reg. region 

Sox2 promoter 

Histones in gene control regions are methylated – Chip analysis  

Nuclei from retinoic acid treated ES cells 

Epigenetics and chromatin, 2010. 



MacroH2A helps to explain resistance to reprogramming 

MacroH2A is high on MEF-X:i    resists reprogramming. 
but absent from EPI-Xi:   is reprogrammed.  

MacroH2A is knocked down by inhibitory RNA, 
and induces Oct4 and Sox2 in MEF-Xi cells  
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No transcription 

High 
expression 

of 
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genes 

Transcription 

transfer 

Nature Cell Biol. 2006 



The resistance of MEF Xi nuclei to reprogramming  

by oocytes is not explained by 

DNA methylation  or by 

histone H3K27 me 



Nature Cell Biol.2007 



Nature Cell Biol.2007 



WAVE-1 is required for  zygotic genome activation 
              and embryonic development      
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Egg 

Embryo development 

+ Antisense 
  Wave-1 _ 

Nucleus 

Nucleus 

Arrest as gastrulae 

Meiotic  
maturation 

(Wiskott-Aldrich syndrome) 

(no antisense) 

(with antisense) 



Histone modifiers overexpression in the oocyte:  
 
 

- H3K9 demethylase KDM4D efficiently removes H3K9Me2/3 
from transplanted nuclei and leads to loss of HP1 alpha 

 
-H2A deubiquitinases (USP16&21) reduce ubiquitinated H2A 

level in transplanted nuclei 
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then assayed for residual RNA. 

No RNase 

Rick Halley Stott 
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Resistance to reprogramming is maintained 
at high salt concentrations 

Levels of 
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after salt 
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Oogenesis and development in the mouse 

Meiotic 

Mouse 
17 
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Major events in nuclear reprogramming 

Chromatin decondensation 

New (pluripotency) gene expression 

DNA demethylation 

DNA replication, cell proliferation 

Repression of unwanted genes 

(lineage selection) 

Amphibia 

Oocyte in  
meiotic 
prophase 

Eggs  
and  
embryos 

DNA demethylation 



Stem cell genes are rapidly activated 
 in mammalian nuclei transplanted to Xenopus oocytes  

1 2 3 4        

nuclei 

Mouse/human 
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Mouse 
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Oct4 
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Nuclei of most differentiated cells resist reprogramming. 

Sox2 

nuclei 
Differentiated 

(resistant) 



Resistance to reprogramming is pronounced when comparing  
                        different donor cell-types.    [by up to 50X] 

Time following nuclear transplantation (hrs)  
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3 24 48 72 96 3 24 48 72 96 
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C2C12 
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Histone variant macroH2A 

• macro domain = 2/3 of macroH2A  

• vertebrate-specific variant  

• ‘hallmark’ of vertebrate heterochromatin 
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Histones in gene control regions are methylated – Chip analysis  

Nuclei from retinoic acid treated ES cells 

Epigenetics and chromatin, 2010. 



   Gene activation in somatic nuclei 
 transplanted to oocytes is selective 

Expresssed in MEFs,  
But NOT in 
transplanted MEF nuclei, 

Number           % 

NOT expressed in MEFs, 
BUT in transplanted  
MEF nuclei  

Expressed in MEFs 
and  in transplanted  
MEF nuclei 
, 

Repressed            7113                  41                  

Activated              1176                   9      

No change            3308                 29 



+/-mRNA injection  

Anti-H3K9Me2/3 

Anti-H3                              

Anti-H2AUb 

Histone modifiers overexpressed in the oocyte efficiently 
modify transplanted nuclear chromatin 

Somatic nuclei 
 transplantation 
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protein 
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analysis 
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Chromatin modifiers that alter the epigenetic state of 
transplanted nuclei 
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Tadpole cloned from a muscle cell Tadpole from fertilized egg 



derived from transplanted muscle cell nucleus 
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by cloning from a muscle cell 





DNA replication is retarded in Amphibian 
somatic cell nuclear transfers 
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B4 histone is required  
for gene activation in oocytes  

, Sox2 transcripts , c-jun transcripts 
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A model of nuclear 
actin function 



Transcriptional activation is much enhanced by WAVE-1 

Toca-1 

WAVE-1 

Rac1 

N-WASP 
Enhances reprogramming seen by 
pluripotency gene  transcription in oocytes 

No effect on  
Reprogramming            

Actin polymerization 

(Wiskott-Aldrich syndrome) 



WAVE-1 is required for  zygotic genome activation 
              and embryonic development      

Oocyte 

Egg 

Embryo development 

+ Antisense 
  Wave-1 _ 

Nucleus 

Nucleus 

Arrest as gastrulae 

Meiotic  
maturation 

(Wiskott-Aldrich syndrome) 

(no antisense) 

(with antisense) 



Genes with restricted expression in MEF or ES nuclei 
after transplantation to Xenopus oocytes 

(41%) 
2123 2864 2048 NOT 

 expressed in ES 
 after NT. 

NOT 
 expressed in MEF 
nuclei after NT. 

Expressed in ES 
nuclei after NT. 

Expressed in MEF 
nuclei after NT. 

Expressed in 
MEF and ES 

(40%) 
(31%) 
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Histone modifications in nuclei can be changed  
after transfer to oocytes 

Nil   K6b Nil  U16 

H3K27me3 H3K9me3/2 H2AUb 

Histone H3 Histone H3 Histone H3 

Nil    K4D 
Overexpressed mRNAs 

0 hour:   mRNA injections.    24 hours:   nuclear injections. 
48 hours:reisolation of injected nuclei and Western analysis. 

K6b, H3K27 demethylase.     K4D, H3K9 demethylase. U16, H2A deubiquitinase. 
Western blots to show loss of histone modifications 48 hours after mRNA injection. 



Overexpression of H2A deubiquitinases removes restriction  
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Transcriptional reprogramming 



  Eggs and oocytes have a very high content of histone H3.3. 

 Histone H3.3 prolongs transcription of somatic nuclei in oocytes. 

   

CONCLUSIONS 
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