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The science of macromolecules has developed from primitive beginnings to a
flourishing field of investigative activities within the comparatively brief span of
some forty years. A wealth of knowledge has been acquired and new points
of view have illumined various branches of the subject. These advances are
the fruits of efforts of many dedicated investigators working in laboratories
spread around the world. In a very real sense, | am before you on this occasion
as their representative.

In these circumstances, the presentation of a lecture of a scope commensurate
with the supreme honor the Royal Swedish Academy of Sciences has bestowed
in granting me the Nobel Prize for Chemistry is an insuperable task. Rather
than attempt to cover the field comprehensively in keeping with the generous
citation by the Royal Academy of Sciences, I have chosen to dwell on a single
theme. This theme is central to the growth of ideas and concepts concerning
macromolecules and their properties. Implemented by methods that have
emerged in recent years, researches along lines | shall attempt to highlight
in this lecture give promise of far-reaching advances in our understanding of
macromolecular substances - materials that are invaluable to mankind.

These polymeric substances are distinguished at the molecular level from
other materials by the concatenation of atoms or groups to form chains, often
of great length. That chemical structures of this design should occur is implicit
in the multivalency manifested by certain atoms, notably carbon, silicon,
oxygen, nitrogen, sulfur and phosphorus, and in the capacity of these atoms to
enter into sequential combinations. The concept of a chain molecule consisting
of atoms covalently linked is as old as modern chemistry. It dates from the
origins of the graphic formula introduced by Couper in 1858 and advanced
by Kekult, Loschmidt and others shortly thereafter. Nothing in chemical
theory, either then apparent or later revealed, sets a limit on the number of
atoms that may be thus joined together. The rules of chemical valency, even
in their most primitive form, anticipate the occurrence of macromolecular
structures.

The importance of macromolecular substances, or polymers, is matched by
their ubiquity. Examples too numerous to mention abound in biological
systems. They comprise the structural materials of both plants and animals.
Macromolecules elaborated through processes of evolution perform intricate
regulatory and reproductive functions in living cells. Synthetic polymers in
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great variety are familiar in articles of commerce. The prevailing structural
motif is the linear chain of serially connected atoms, groups or structural
units. Departures from strict linearity may sometimes occur through the agency
of occasional branched units that impart a ramified pattern to the over-all
structure. Linearity is predominant in most macromolecular substances,
however.

It is noteworthy that the chemical bonds in macromolecules differ in no
discernible respect from those in “monomeric” compounds of low molecular
weight. The same rules of valency apply; the lengths of the bonds, e.g., C-C,
C-H, C-O, etc., are the same as the corresponding bonds in monomeric
molecules within limits of experimental measurement. This seemingly trivial
observation has two important implications: first, the chemistry of macro-
molecules is coextensive with that of low molecular substances; second, the
chemical basis for the special properties of polymers that equip them for so
many applications and functions, both in nature and in the artifacts of man, is
not therefore to be sought in peculiarities of chemical bonding but rather in
their macromolecular constitution, specifically, in the attributes of long
molecular chains.

Comprehension of the spatial relationships between the atoms of a molecule
is a universal prerequisite for bridging the connection between the graphic
formula and the properties of the substance so constituted. Structural chemistry
has provided a wealth of information on bond lengths and bond angles. By
means of this information the graphic formula, primarily a topological device,
has been superseded by the structural formula and by the space model that
affords a quantitative representation of the molecule in three dimensions.
The stage was thus set for the consideration of rotations about chemical bonds,
ie., for conformational analysis of conventional organic compounds, especially
cyclic ones. A proper account of bond rotations obviously is essential for a
definitive analysis of the spatial geometry of a molecule whose structure
permits such rotations.

The configuration of a linear macromolecule in space involves circum-
stances of much greater complexity. A portion of such a molecule is shown
schematically in Figure 1. Consecutive bonds comprising the chain skeleton
are joined at angles 6 fixed within narrow limits. Rotations ¢ may occur about
these skeletal bonds. Each such rotation is subject, however, to a potential
determined by the character of the bond itself and by hindrances imposed by
steric interactions between pendant atoms and groups. The number and
variety of configurations (or conformations in the language of organic chemistry)
that may be generated by execution of rotations about each of the skeletal
bonds of a long chain, comprising thousands of bonds in a typical polymer, is
prodigious beyond comprehension. When the macromolecule is free of
constraints, e.g., when in dilutesolution, all of these configurations are accessible.
Analysis of the manner in which such a molecule may arrange itself in space
finds close analogies elsewhere in science, e.g., in the familiar problem of
random walk, in diffusion, in the mathematical treatment of systems in one
dimension, and in the behavior of real gases.
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Fig. 1. Representation of the skeletal bonds of a section of a chain molecule showing
supplements 6 of bond angles, and torsional rotations @ for bonds i, i + 1, ete.

Inquiry into the spatial configuration of these long-chain molecules, fascinat-
ing in itself, derives compelling motivation from its close relevancy to the
properties imparted by such molecules to the materials comprising them.
Indeed, most of the properties that distinguish polymers from other substances
are intimately related to the spatial configurations of their molecules, these
configurations being available in profusion as noted. The phenomenon of
rubber-like elasticity, the hydrodynamic and thermodynamic properties of
polymer solutions, and various optical properties are but a few that reflect the
spatial character of the random macromolecule. The subject is the nexus
between chemical constitution and physical and chemical properties of poly-
meric substances, both biological and synthetic.

The importance of gaining a grasp of the spatial character of polymeric
chains became evident immediately upon the establishment, ca. 1930, of the
hypothesis that they are covalently linked molecules rather than aggregates
of smaller molecules, an achievement due in large measure to the compelling
evidence adduced and forcefully presented by H. Staudinger, Nobelist for
1953. In 1932 K. H. Meyer' adumbrated the theory of rubber-like elasticity
by calling attention to the capacity of randomly coiled polymer chains to
accommodate large deformations owing to the variety of configurations acces-
sible to them.

W. Kuhn’and E. Guth and H. Mark’ made the first attempts at mathe-
matical description of the spatial configurations of random chains. The com-
plexities of bond geometry and of bond rotations, poorly understood at the
time, were circumvented by taking refuge in the analogy to unrestricted
random flights, the theory of which had been fully developed by Lord Rayleigh.
The skeletal bonds of the molecular chain were thus likened to the steps in a
random walk in three dimensions, the steps being uncorrelated one to another.
Restrictions imposed by bond angles and hindrances to rotation were dismissed
on the grounds that they should not affect the form of the results.

For a random flight chain consisting of n bonds each of length I the mean-
square of the distance r between the ends of the chain is given by the familiar
relation

(r*y = ni2 (1)

The angle brackets denote the average taken over all configurations. Kuhn®
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argued that the consequences of fixed bond angles and hindrances to rotation
could be accommodated by letting several bonds of the chain molecule be
represented by one longer “equivalent” bond, or step, of the random flight.
This would require n to be diminished and Ito be increased in Eq. 1. Equiv-
alently, one may preserve the identification of n and Iwith the actual molec-

ular quantities and replace Eq. (1) with

{r?y = C ni, 2)

where C is a constant for polymers of a given homologous series, i.e., for
polymers differing in length but composed of identical monomeric units. The
proportionality between <r®> and chain length expressed in Eq. (2) may be
shown to hold for any random chain of finite flexibility, regardless of the
structure, provided that the chain is of sufficient length and that it is unper-
turbed by external forces or by effects due to excluded volume (cf. seq.).

The result expressed in Eq. (2) is of the utmost importance. Closely asso-
ciated with it is the assertion that the density distribution W(r) of values of
the end-to-end vector r must be Gaussian for chains of sufficient length,
irrespective of their chemical structure, provided only that the structure admits
of some degree of flexibility. Hence, for large n the distribution of values of r is
determined by the single parameter (r') that defines the Gaussian distribution.

Much of polymer theory has been propounded on the basis of the Kuhn
“equivalent” random flight chain, with adjustment of n and I or of C, as
required to match experimental determination of (r) or of other configura-
tion-dependent quantities. The validity of this model therefore invites critical
examination. Its intrinsic artificiality is its foremost deficiency. Actual bond
lengths, bond angles and rotational hindrances cannot be incorporated in this
model. Hence, contact is broken at the outset with the features of chemical
constitution that distinguish macromolecular chains of one kind from those of
another. The model is therefore incapable of accounting for the vast differences
in properties exhibited by the great variety of polymeric substances.

The random flight chain is patently unsuited for the treatment of constitutive
properties that are configuration-dependent, e.g., dipole moments, optical
polarizabilities and dichroism. Inasmuch as the contribution to one of these
properties from a structural unit of the chain is a vector or tensor, it cannot be
referenced to an equivalent bond that is a mere line. Moreover, the equivalent
bond cannot be embedded unambiguously in the real structure.

Methods have recently been devised for treating macromolecular chains
in a realistic manner. They take full account of the structural geometry of the
given chain and, in excellent approximation, of the potentials affecting bond
rotations as well. Before discussing these method, however, I must direct your
attention to another aspect of the subject. I refer to the notorious effect of
volume exclusion in a polymer chain.

At the hazard of seeming trite, I should begin by pointing out that the chain
molecule is forbidden to adopt a configuration in which two of its parts, or
segments, occupy the same space. The fact is indisputable; its consequences
are less obvious. It will be apparent, however, that volume exclusion vitiates
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Fig. 2. The effect of excluded volume. The configuration on the left represents the
random coil in absence of volume exclusion, the chain being equivalent to a line in
space. In the sketch on the right, the units of the chain occupy finite domains from
which other units are excluded, with the result that the average size of the configura-
tion is increased.

the analogy between the trajectory of a particle executing a random flight and
the molecular chain, a material body. The particle may cross its own path at
will, but self intersections of the polymer chain are forbidden.

The effect of excluded volume must be dealt with regardless of the model
chosen for representation of the chain. In practice, elimination of the effect of
volume exclusion is a prerequisite to the analysis of experimental results, as I
will explain in more detail later.

The closely related problems of random flights with disallowance of self
intersections and of volume exclusion within long-chain molecules have attracted
the attention of many theorists. A variety of mathematical techniques have
been applied to the treatment of these problems, and a profusion of theories
have been put forward, some with a high order of sophistication. Extensive
numerical computations of random walks on lattices of various sorts also have
been carried out. Convergence of results obtained by the many investigators
captivated by the subject over the past quarter century seems at last to be
discernible. I shall confine myself to a brief sketch of an early, comparatively
simple approach to the solution of this problem.” The results it yields contrast
with its simplicity.

Returning to the analogy of the trajectory traced by a particle undergoing
a sequence of finite displacements, we consider only those trajectories that are
free of intersections as being acceptable for the chain molecule. Directions of
successive steps may or may not be correlated, i.e., restrictions on bond
angles and rotational hindrances may or may not be operative; this is im-
material with respect to the matter immediately at hand. Obviously, the
set of eligible configurations will occupy a larger domain, on the average, than
those having one or more self intersections. Hence, volume exclusion must
cause <r’> to increase. The associated expansion of the spatial configuration is
illustrated in Fig. 2. Other configuration-dependent quantities may be affected
as well.

This much is readily evident. Assessment of the magnitude of the perturba-
tion of the configuration and its dependence on chain length require a more
penetrating examination.

The problem has two interrelated parts: (i) the mutual exclusion of the

space occupied by segments comprising the chain tends to disperse them over a
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larger volume, and (ii) the concomitant alteration of the chain configuration
opposes expansion of the chain. Volume exclusion (i) is commonplace. It is
prevalent in conventional dilute solutions and in real gases, molecules of which
mutually exclude one another. In the polymer chain the same rules of exclusion
apply, but treatment of the problem is complicated by its association with (ii).

Pursuing the analogies to dilute solutions and gases, we adopt a “smoothed
density” or “mean field” model. The segments of the chain, x in number, are
considered to pervade a volume V, the connections between them being
ignored insofar as part (i) is concerned. The segment need not be defined
explicitly; it may be identified with a repeating unit or some other approxi-
mately isometric portion of the chain. In any case, x will be proportional to the
number n of bonds; in general x # n, however. For simplicity, we may consider
the segment density g to be uniform throughout the volume V; that is, p = x/V
within V and ¢ = 0 outside of V. This volume should be proportional to
()", where <r> is the mean-square separation of the ends of the chain
averaged over those configurations not disallowed by excluded volume interactions.
Accordingly, we let

V = A (2o, 3)

where A is a numerical factor expected to be of the order of magnitude of
unity.

It is necessary to digress at this point for the purpose of drawing a distinction
between <r> for the chain perturbed by the effects of excluded volume and
<r*> for the unperturbed chain in the absence of such effects. If o denotes the

factor by which a linear dimension of the configuration is altered, then
{r*) = a¥(r*), (4)

Equation (2), having been derived without regard for excluded volume
interactions, should be replaced by

(r*y, = Cné2, @)

where C reaches a constant value with increase in n for any series of finitely
flexible chains.

The smoothed density within the domain of a linear macromolecule having
a molecular weight of 100,000 or greater (ie., n > 1000) is low, only on the
order of one percent or less of the space being occupied by chain segments.
For a random dispersion of the segments over the volume V, encounters in
which segments overlap are rare in the sense that few of them are thus in-
volved. However, the expectation that such a dispersion is entirely free of
overlaps between any pair of segments is very small for a long chain. The
attrition of configurations due to excluded volume is therefore severe.

In light of the low segment density, it suffices to consider only binary
encounters. Hence, if B is the volume excluded by a segment, the probability
that an arbitrary distribution of their centers within the volume V is free
of conflicts between any pair of segments is



162 Chemistry 1974

Py ~ T (1—if/V) ~ exp(— Bx2/2V). (5)

i=

—_

Introduction of Eq. (3) and (4) gives

Pa = exp(—Bx*[2A{r*) " a’) (6)
or, in terms of the conventional parameter z defined by

z = (3/2)% ({r*)ofx)~¢/2x 2 B, (7)

Py = exp[—2V2(n/3)3¥2Aza~?]. (8)

Since {r%}, is proportional to x for long chains (see Eq. (2')), z depends on the
square-root of the chain length for a given series of polymer homologs.

We require also the possibility Pgj) of a set of configurations having the
average density corresponding to the dilation a? relative to the probability of
a set of configurations for which the density of segments corresponds to
a® = 1. For the former, the mean-squared separation of the ends of the chain
is {r?>; for the latter it is (r2),. The distribution of chain vectors r for the
unperturbed chain is approximately Gaussian as noted above. That is to say,
the probability that r falls in the range r to r+dr is

W(r)dr = Const exp(—3r?/2{r?),)dr, 9)

where dr denotes the element of volume. The required factor is the ratio of
the probabilities for the dilated and the undilated sets of configurations. These
probabilities, obtained by taking the products of W(r)dr over the respective
sets of configurations, are expressed by W(r) according to Eq. (9) with r?
therein replaced by the respective mean values, (r?) and {r?),, for the per-
turbed and unperturbed sets. Bearing in mind that the volume element dr
is dilated as well, we thus obtain

Py = [(dr)/(dr)olexp[—3({r*) —<r*),)/2{r*)]
= alexp[—(3/2) (a2—1)]. (10)

The combined probability of the state defined by the dilation a? is

PuyPay = a’exp[—2%2(n/3)%*2A1za—*—(3/2) (a2—1)]. (11)
Solution for the value of a that maximizes this expression gives

ab—ad = 212(;[3)32A 1z, (12)

Recalling that z is proportional to x/2f according to Eq. (7), one may express
this result alternatively as follows

a’—a® = Bx2f, (127

where B = ({r2),/x)"#2(2A)~1 is a constant for a given series of polymer
homologs.

In the full treatment>¢ of the problem along the lines sketched briefly
above, the continuous variation of the mean segment density with distance
from the center of the molecule is taken into account, and the appropriate
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sums are executed over all configurations of the chain. The squared radius of
gyration s, i.e, the mean-square of the distances of the segments from their
center of gravity, is preferable to r'as a parameter with which to characterize
the spatial distribution.” Treatments carried out with these refinements
affirm the essential validity of the result expressed by Eq. (12) or (12'). They
show conclusively” that the form of the result should hold in the limit of
large values of fx'?, ie., for large excluded volume and/or high chain length,
and hence for a > > 1. In this limit, (a®>—a®) /z = 1.67 according to H. Fujita
and T. Norisuye.’For a < ~ 1.4, however, this ratio decreases, reaching a
value of 1.276 at a =1 .%

The general utility of the foregoing result derived from the most elementary
considerations is thus substantiated by elaboration and refinement of the
analysis, the quantitative inaccuracy of Eqgs. (12) and (12") in the range
1.0 < a < 1.4 notwithstanding. The relationship between a and the parameter
z prescribed by these equations, especially as refined by Fujita and Norisuye,’
appears to be well supported by experiment.”"

The principal conclusions to be drawn from the foregoing results are the
following: the expansion of the configuration due to volume exclusion increases
with chain length without limit for B > 0; for very large values of §x1/? relative
to ({r2),/x)¥? it should increase as the 1/10 power of the chain length. The
sustained increase of the perturbation with chain length reflects the fact that
interactions between segments that are remote in sequence along the chain
are dominant in affecting the dimensions of the chain. It is on this account
that the excluded volume effect is often referred to as a long-range inter-
action.”™

The problem has been treated by a variety of other procedures.”” Notable
amongst these treatments is the self-consistent field theory of S. F. Edwards.”
The asymptotic dependence of a on the one-tenth power of the chain length,
and hence the dependence of <r"> on n** for large values of the parameter z,
has been confirmed.12

The dilute solution is the milieu chosen for most physicochemical ex-
periments conducted for the purpose of characterizing polymers. The effect
of excluded volume is reflected in the properties of the polymer molecule thus
determined, and must be taken into account if the measurements are to be
properly interpreted, The viscosity of a dilute polymer solution is illustrative.
Its usefulness for the characterization of polymers gained recognition largely
through the work of Staudinger and his collaborators.

Results are usually expressed as the intrinsic viscosity [#] defined as the
ratio of the increase in the relative viscosity 7re1 by the polymeric solute to

its concentration ¢ in the limit of infinite dilution. That is,

[7] = lim [(gre—1)/c]

c—0

the concentration ¢ being expressed in weight per unit volume. The increment

in viscosity due to a polymer molecule. is proportional to its hydrodynamic
3/2

volume, which in turn should be proportional to <r*>"*for a typical polymer
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chain. Hence, #re1—1 should be proportional to the product of <r’>**and
the number density of solute molecules given by ¢/M where M is the molecular

weight. It follows that
[l = &<y M, (13)

where @ is a constant of proportionality.>'® Substitution from Eq. (4) and
rearrangement of the result gives

[7]] — ®(<r2>0/M)3/2M1/2a3 (13/)

The ratio {r2),/M should be constant for a series of homologs of varying
molecular weight, provided of course that the molecular weight, and hence
the chain length, is sufficiently large.

If the excluded volume effect could be ignored, the intrinsic viscosity should
vary proportionally to M. Since, however, o increases with M, a stronger
dependence on M generally is observed. Often the dependence of [5] on
molecular weight can be represented in satisfactory approximation by the
empirical relation

[7] = KM? (14)

where 0.5 < a < 0.8. Typical results are shown by the upper sets of data in
Figs. 3 and 4 for polystyrene dissolved in benzene'* and for poly(methyl
methacrylate) in methyl ethyl ketone,’® respectively. Values of a? are in the
range 1.4 to 5. At the asymptote for chains of great length and large excluded
volume B, the exponent a should reach 0.80 according to the treatment given
above. Although this limit is seldom reached within the accessible range of
molecular weights, the effects of excluded volume can be substantial. They
must be taken into account in the interpretation of hydrodynamic measure-
ments.'316 Otherwise, the dependences of the intrinsic viscosity and the transla-
tional friction coefficient on molecular chain length are quite incomprehensible.

Measurement of light scattering as a function of angle, a method introduced
by the late P. Debye, affords a convenient means for determining the mean-
square radius of gyration. Small-angle scattering of x-rays (and lately of
neutrons) offers an alternative for securing the same information. From the
radius of gyration one may obtain the parameter <r”> upon which attention
is focused here. The results are affected, of course, by the perturbation due
to excluded volume. Inasmuch as the perturbation is dependent on the solvent
and temperature, the results directly obtained by these methods are not
intrinsically characteristic of the macromolecule. Values obtained for <r*>
from the intrinsic viscosity by use of Eq. (13), or by other methods, must also
be construed to be jointly dependent on the macromolecule and its environ-
ment.

If the factor oo were known, the necessary correction could be introduced
readily to obtain the more substantive quantities, such as <r’> and <s™>,
that characterize the macromolecule itself and are generally quite independent
of the solvent. Evaluation of o according to Eq. (11) and (12) would require

the excluded volume B. This parameter depends on the solvent in a manner
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that eludes prediction. Fairly extensive experimental measurements are
required for its estimation, or for otherwise making correction for the ex-
pansion O

All these difficulties are circumvented if measurements on the polymer
solution are conducted under conditions such that the effects of excluded
volume are suppressed. The resistance of atoms to superposition cannot, of
course, be set aside. But the consequences thereof can be neutralized. We have
only to recall that the effects of excluded volume in a gas comprising real
molecules of finite size are exactly compensated by intermolecular attractions
at the Boyle temperature (up to moderately high gas densities). At this
temperature the real gas masquerades as an ideal one.

For the macromolecule in solution, realization of the analogous condition
requires a relatively poor solvent in which the polymer segments prefer self-
contacts over contacts with the solvent. The incidence of self-contacts may
then be adjusted by manipulating the temperature and/or the solvent com-
position until the required balance is established. Carrying the analogy to
a real gas a step further, we require the excluded volume integral for the inter-
action between a pair of segments to vanish; that is, we require that B=0.
This is the necessary and sufficient condition. ***

As already noted, estimation of the value of B is difficult; the prediction
of conditions under which B shall precisely vanish would be even more
precarious. However, the “Theta point,” so-called, at which this condition
is met is readily identified with high accuracy by any of several experimental
procedures. An excluded volume of zero connotes a second virial coefficient
of zero, and hence conformance of the osmotic pressure to the celebrated law
of J. H. van't Hoff. The Theta point may be located directly from osmotic
pressure determinations, from light scattering measured as a function of
concentration, or from determination of the precipitation point as a function
of molecular weight.””

The efficacy of this procedure, validated a number of years ago with the
collaboration of T. G. Fox, W. R. Krigbaum, and others,®"*is illustrated
in Figs. 3 and 4 by the lower plots of data representing intrinsic viscosities
measured under ideal, or Theta conditions® The slopes of the lines drawn
through the lower sets of points are exactly 1/2, as required by Eq. (13’) when
B =0 and hence o0 = 1. The excellent agreement here illustrated has been
abundantly confirmed for linear macromolecules of the widest variety, ranging
from polyisobutylene and polyethylene to polyribonucleotides.” At the Theta
point the mean-square chain vector <r’>, and the mean-square radius of
gyration <s">, invariably are found to be proportional to chain length.

A highly effective strategy for characterization of macromolecules emerges
from these findings. By conducting experiments at the Theta point, the
disconcerting (albeit interesting!) effects of excluded volume on experimentally
measured quantities may be eliminated. Parameters (e.g., <r> and <s">)
are thus obtained that are characteristic of the molecular chain. They are
found to be virtually independent of the nature of the “Theta solvent” selected.

Having eliminated the effects of long range interactions, one may turn
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Fig. 3. Intrinsic viscosities of polystyrene fractions plotted against their molecular
weights on logarithmic scales in accordance with Eq. (14). The upper set of data was
determined in benzene, a good solvent for this polymer. The lower set of data was
determined in cyclohexane at the Theta point. The slopes of the lines are a = 0.75 and
0.50, respectively. From the results of Altares, Wyman and Allen.**

attention to the role of short range features: structural geometry, bond
rotation potentials, and steric interactions between near-neighboring groups.
It is here that the influences of chemical architecture are laid bare. If the
marked differences in properties that distinguish the great variety of polymeric
substances, both natural and synthetic, are to be rationally understood in
fundamental, molecular terms, this must be the focus of future research.

Rigorous theoretical methods have recently become available for dealing
realistically with short-range features peculiar to a given structure. Most of
the remainder of this lecture is devoted to a brief overview of these methods.
Although the field is comparatively new and its exploration has only begun,
space will not permit a digest of the results already obtained.

The broad objective of the methods to which we now turn attention is to
treat the structure and conformations accessible to the chain molecule in such
a manner as will enable one to calculate configuration-dependent quantities
and to average them over all conformations, or spatial configurations, of the
unperturbed chain. The properties under consideration are constitutive; they
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Fig. 4. Intrinsic viscosities of fractions of poly(methyl methacrylate) according to Chinai
and Samuels”plotted as in Fig. 3. The upper set of points was measured in methyl
ethyl ketone, a good solvent. The lower set was determined in a mixture of methyl
ethyl ketone and isopropanol at the Theta point. Slopes are a = 0.79 and 0.50, respec-
tively.

represent sums of contributions from the individual units, or chemical
groupings, comprising the chain. In addition to <r> and <s>, they include:
mean-square dipole moments; the optical anisotropies underlying strain
birefringence, depolarized light scattering and electric birefringence; di-
chroism; and the higher moments, both scalar and tensor, of the chainvector r.
Classical statistical mechanics provides the basis for evaluating the con-
figurational averages of these quantities. Since bond lengths and bond angles
ordinarily may be regarded as fixed, the bond rotations ¢ are the variables
over which averaging must be carried out. The procedure rests on the rota-
tional isomeric state scheme, the foundations for which were set forth in large
measure by M. V. Volkenstein”and his colleagues”in Leningrad in the late
1950's and early 1960's. It is best explained by examples.

Consider rotation about an internal bond of an n-alkane chain. As is now
well established,”” the three staggered conformations, trans(t), gauche-

plus(g’) and its mirror image, gauche-minus(g-), are of lower energy than
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Fig. 5. Two of the staggered conformations for n-butane: trans on the left and gauche-

minus on the right.

the eclipsed forms. The t and g- conformations of n-butane are shown in Fig. 5.
The energies of the eclipsed conformations separating t from g+ and t from
g- are about 3.5 kecal. mol’above the energy of the trans conformation. Hence,
in good approximation, it is justified to consider each bond to occur in one of
three rotational isomeric states centered near (but not necessarily precisely at)
the energy minima associated with the three staggered conformations.”*
The gauche minima lie at an energy of about 500 cal. mol’above trans.
Each of the former is therefore disfavored compared to the latter by a “sta-
tistical weight” factor we choose to call ¢ = exp( -E_/RT), where E is about
500 cal. mol”; thus, (¢ = 0.5 at T = 400 K.

A complication arises from the fact that the potentials affecting bond rotations
usually are neighbor dependent; i.e., the potential affecting ¢; depends on the
rotations @i ; and @i4+,. Bond rotations cannot, therefore, be treated indepen-
dently**** The source of this interdependence in the case of an n-alkane
chain is illustrated in Fig. 6 showing a pair of consecutive bonds in three of
their nine conformations. In the conformations tt, tg’, g't, tg” and g7t the
two methylene groups pendant to this pair of bonds are well separated. For
gauche rotations g+g+ and g'g” of the same hand (Fig. 6b), these groups are
proximate but not appreciably overlapped. Semi-empirical calculations™"*
“show the intramolecular energy for these two equivalent conformations to be
very nearly equal to the sum (cu. 1000 cal. mol") for two well-separated gauche
bonds; i.e., the interdependence of the pair of rotations is negligible. In the
remaining conformations, g'g'and gg’, the steric overlap is severe (Fig. 6c).
It may be alleviated somewhat by compromising rotations, but the excess
energy associated therewith is nevertheless about 2.0 kcal. mol™. Hence, a
statistical weight factor ® = exp (-2000/RT) is required for each such
pair.”** Inspection of models in detail shows that interactions dependent
upon rotations about three, four of five consecutive bonds are disallowed by
interferences of shorter range and hence may be ignored.”It suffices there-
fore to consider first neighbors only.

The occurrence of interactions that depend on pairs of skeletal bonds is the
rule in chain molecules. In some of them, notably in vinyl polymers, such
interactions may affect most of the conformations. Hence, interdependence
of rotations usually plays a major role in determining the spatial configuration
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Fig. 6. Conformations for a pair of consecutive bonds in an n-alkane chain: (a), tt,
(b), g'g*; (c), g'g". Wedged bonds project forward from the plane of the central
bonds, dashed bonds project behind this plane.

of the chain. The rotational isometric state approximation, whereby the
continuous variation of each ¢ is replaced by discrete states, provides the key to
mathematical solution of the problem posed by rotational interde-
pendence.""

It is necessary therefore to consider the bonds pairwise consecutively, and
to formulate a set of statistical weights for bond i that take account of the
state of bond i-l. These statistical weights are conveniently presented in the
form of an array, or matrix, as follows:

utt ute™ ute”

U= | ug't uete”  uete | (15)
uet uegst yege |y

where the rows are indexed in the order t, g', gto the state of bond

i- 1, and the columns are indexed to the state of bond i in the same order.

According to the analysis of the alkane chain conformations presented briefly

above, U takes the form™**
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1 o ]
Ui=1|1 o ow (16)
1 ow o i

for any bond 1 <i << n.

A conformation of the chain is specified in the rotational isometric state
approximation by stipulation of the states for all internal bonds 2 to n-1
inclusive; e.g., by g'ttg'g, etc. Owing to the three-fold symmetry of the
terminal methyl groups of the alkane chain, rotations about the terminal
bonds are inconsequential and hence are ignored. The statistical weight for
the specified conformation of the chain is obtained by selecting the appropriate
factor for each bond from the array (15) according to the state of this bond and
of its predecessor, and taking the product of such factors for all bonds 2 to
n - 1. In the example above this product is ug" ug*tuttute" uge , ete. It will
be obvious that the first superscripted index in one of the factors u must repeat
the second index of its predecessor since these indices refer to the same bond.

The configuration partition function, representing the sum of all such
factors, one for each conformation of the chain as represented by the scheme of

rotational isomeric states, is

Z = 2 U,Uj. . .Uy, . .Up_q, (17
all states

where the subscripts are serial indexes. Each u must be assigned as specified
above. The sum, which extends over all ordered combinations of rotational
states, may be generated identically as the product of the arrays U, treated as
matrices. That is, according to the rules of matrix multiplication

Z =11 Uy, (18)
i=

where U= row (1, 0, 0) and U = column (1, 1, 1). Matrix multiplication
generates products precisely of the character to which attention is directed at
the close of the preceding paragraph. Serial multiplication of the statistical
weight matrices generates this product for each and every conformation of the
chain, and Eq. (18) with the operators U and U appended gives their sum.

The foregoing procedure for evaluation of Z is a minor variant of the method
of H. A. Kramers and G. H. Wannier “for treating a hypothetical one-
dimensional ferromagnet or lattice. A number of interesting characteristics of
the chain molecule can be deduced from the partition function by application
of familiar techniques of statistical mechanics. I shall resist the temptation to
elaborate these beyond mentioning two properties of the molecule that may
be derived directly from the partition function, namely, the incidences of the
various rotational states and combinations thereof, and the equilibrium con-
stants between isomeric structures of the chain in the presence of catalysts
effectuating their inter-conversion. Vinyl polymers having the structure
depicted in Fig. 7 with R" # R afford examples wherein the study of equilibria
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Fig. 7. A vinyl polymer chain shown in projection in its planar (fully extended) con-
formation. If the substituents R and R’ differ (e.g., if R = C¢Hs and R’ = H as in
polystyrene), diastereomeric dyads must be distinguished as indicated for the stereo-
chemical structure shown.

between various diastereomeric forms arising from the local chirality of
individual skeletal bonds has been especially fruitful.”
Consider the evaluation of a configuration-dependent property for a given
configuration, or conformation, of the chain. Since the configuration is seldom
“given”, the problem as stated is artificial. Its solution, however, is a necessary
precursor to the ultimate goal, which is to obtain the average of the property
over all configurations. A property or characteristic of the chain that will serve
for illustration is the end-to-end vector r. Suppose we wish to express this
vector with reference to the first two bonds of the chain. For definiteness, let a
Cartesian coordinate system be affixed to these two bonds with its X,-axis along
the first bond and its Y,-axis in the plane of bonds 1 and 2, as shown in Fig. 8.
n

The vector r is just the sum Y 1; of all of the bond vectors 1;, each expressed
i=1

in this reference frame.

In order to facilitate the task of transforming every bond vector to the
reference frame affiliated with the first bond, it is helpful to define a reference
frame for each skeletal bond of the chain. For example, one may place the
axis X along bond i, the Y-axis in the plane of bonds i - 1 and i, and choose
the Z-axis to complete a right-handed Cartesian system. Let T symbolize the
transformation that, by premultiplication, converts the representation of a
vector in reference frame i+l to its representation in the preceding reference
frame i. Then bond i referred to the initial reference frame is given by

T,T,... Tl

where lis presented in reference frame i. The required sum is just

e 3T T (19)

i=1

This sum of products can be generated according to a simple algorithm.

31,32

We first define a “generator” matrix A,as follows
T 1L
Ai = N 1 < i < n, (20)
0 1
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Fig. 8. Specification of the coordinate axes affixed to each of the first two bonds of
the chain: XY, ,for bond 1 and X,Y,for bond 2.
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together with the two terminal matrices

A1 = [T1 11], (21)
I,

A= . (22)
1

In these equations T, is the matrix representation of the transformation speci-
fied above and 0 is the null matrix of order 1 x 3. The desired vector r is
generated identically by taking the serial product of the A’s; ie,

n
r= 11 A (23)
i=1
as may easily be verified from the elementary rules of matrix multiplication.
Each generator matrix A depends on the length of bond i and, through T,
on both the angle 0; between bonds i and i+l and on the angle of rotation
@i about bond i (see Fig. 1).

In order to obtain the average of r over all configurations of the chain, it is
necessary to evaluate the sum over all products of the kind given in Eq. (23)
with each of them multiplied by the appropriate statistical weight for the
specified configuration of the chain; see Eq. (17). That is,

{x>y = Z71 Ju,u;. . up-AjA,. L LAy, (24)

where the sum includes all configurations. This sum can be generated by serial
multiplication of matrices defined as follows:
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uttAt utetAe® ute"Ag~
a; = | ug"tAt uetetAe"  yetemAe || 1 <i<n, (25)

— _+ + I —
ug tAt uR 8 AEg ug g Ag |;

a, =[A;, 0 0], (26)

ap = column (Ap, Ay, Ap). (27)
Then™

{rdg=2Z11I aj. (28)

i=1

The matrix a comprises the elements of U (see Eq. (15)) joined with the A
matrix for the rotational state of bond i as prescribed by the column index. It
will be apparent that serial multiplication of the aaccording to Eq. (28)
generates the statistical weight factor w,u,.. .u_ for every configuration of the
chain in the same way that these factors are generated by serial multiplication
of the statistical weight matrices U in Eq. (18). Simultaneously, Eq. (28)
generates the product of A’s (see Eq. (23)) that produces the vector r for each
configuration thus weighted. The resulting products of statistical weights and
of A’s are precisely the terms required by Eq. (24). The terminal factors in
Eq. (28) yield their sum.

With greater mathematical concision

31,32

a;= (Ui® Es)lIAng 1 <i<n, (29)
a, = U1 ® Al, (30)
an = Un® Ay, (31)

where E; is the identity matrix of order three, (¥ signifies the direct product,
and ||A|| denotes the diagonal array of the matrices A;t, A€ and A"

A characteristic of the chain commanding greater interest is the quantity
{r?}, introduced in earlier discussion. For a given configuration of the chain,
r? is just the scalar product of r with itself, i.e.,

rP=rr= Z l2i+22 zli'].j (32)
i=1 i<
If each bond vector lis expressed in its own reference frame i, then
r? = Z liz—f—QZ Z liTTiT,'ﬂ. . .Tj~11j, (33)
1 1<j

where LT is the transposed, or row form of vector 1. These sums can be eval-
uated by serial multiplication of the generator matrices?#33

1 2'r
G=|]0 T 1], l <i<n. (34)
0 0 11y
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Fig. 9. Characteristic ratios <r®> o/nl® plotted against the number of bonds n in the
chain for polymethylene, and for isotactic and syndiotactic poly (methyl metacrylate) ‘s.
From the calculations of Abe, Jernigan and Flory*and of Yoon.*

That is,

r2 = Il Gy (35)
1

where G has the form of the first row, and G, that of final column of Eq. (34).
Evaluation of <r"> proceeds exactly as set forth above for <r>**

The foregoing method enjoys great versatility. The chain may be of any
specified length and structure. If it comprises a variety of skeletal bonds and
repeat units, the factors entering into the serial products have merely to be
fashioned to introduce the characteristics of the bond represented by each of
the successive factors. The mathematical methods are exact; the procedure is
free of approximations beyond that involved in adoption of the rotational
isometric state scheme. With judicious choice of rotational states, the error
here involved is generally within the limits of accuracy of basic information on
bond rotations, nonbonded interactions, etc.

Other molecular properties that may be computed by straightforward

2432

adaptation of these methods™ include the higher scalar moments <r*>, <r>,

etc; the moment tensors formed from r; the radius ofgyration <s™> = (n+ 1)

22<r2”>; the optical polarizability and its invariants that govern the
~ &
optical anistropy as manifested in depolarized light scattering, in strain bire-
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fringence and in electric birefringence; x-ray scattering at small angles; and
NMR chemical shifts.

For illustration, characteristic ratios <r'>;/nP are plotted in Fig. 9 against
the numbers n of bonds for n-alkanes and for isotactic and syndiotactic poly-
(methyl methacrylate), or PMMA. Isotactic PMMA is represented by the
formula in Fig. 7 with R = COOCH, and R’ = CH, and with all dyads of
the meso form, i.e, with R occurring consistently above (or below) the axis of
the chain. In the syndiotactic stereoisomer, the substituents R and R’ alternate
from one side to the other, all dyads being racemic.

For the alkane and the isotactic PMMA chains the characteristic ratios
increase monotonically with chain length, approaching asymptotic values for
n =100 bonds. This behavior is typical. For syndiotactic PMMA, however,
the characteristic ratio passes through a maximum at intermediate values of n,
according to these computations by D. Y. Yoon.” This behavior can be traced™
to the inequality of the skeletal bond angles in PMMA in conjunction with
the preference for tt conformations in the syndiotactic chain.” The maximum
exhibited in Fig. 9 for this polymer is thus a direct consequence of its constitu-
tion. This peculiarity manifests itself in the small angle scattering of x-rays
and neutrons by predominantly syndiotactic PMMA of high molecular
weight.” Scattering intensities are enhanced at angles corresponding, roughly,

to distances approximating <>,

at the maximum in Fig. 9. This enhance-
ment, heretofore considered anomalous, is in fact a direct consequence of the
structure and configuration of syndiotactic PMMA.

It is thus apparent that subtle features of the chemical architecture of
polymeric chains are manifested in their molecular properties. Treatment in
terms of the artificial models much in use at present may therefore be quite
misleading,

The analysis of the spatial configurations of macromolecular chains presented
above is addressed primarily to an isolated molecule as it exists, for example,
in a dilute solution. On theoretical grounds, the results obtained should be
equally applicable to the molecules as they occur in an amorphous polymer,
even in total absence of a diluent. This assertion follows unambiguously from

5,637

the statistical thermodynamics of mixing of polymer chains,”” including
their mixtures with low molecular diluents. It has evoked much skepticism,
however, and opinions to the contrary have been widespread. These opposing
views stem primarily from qualitative arguments to the effect that difficulties
inherent in the packing of long chains of consecutively connected segments to
space-filling density can only be resolved either by alignment of the chains
in bundle arrays, or by segregation of individual molecules in the form of
compact globules. In either circumstance, the chain configuration would be
altered drastically.

Whereas dense packing of polymer chains may appear to be a distressing
task, a thorough examination of the problem leads to the firm conclusion that
macromolecular chains whose structures offer sufficient flexibility are capable
of meeting the challenge without departure or deviation from their intrinsic
proclivities. In brief, the number of configurations the chains may assume is
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sufficiently great to guarantee numerous combinations of arrangements in
which the condition of mutual exclusion of space is met throughout the sys-
tem as a whole. Moreover, the task of packing chain molecules is not made
easier by partial ordering of the chains or by segregating them.” Any state of
organization short of complete abandonment of disorder in favor of creation
of a crystalline phase offers no advantage, in a statistical-thermodynamic sense.

Theoretical arguments aside, experimental evidence is compelling in showing
the chains to occur in random configurations in amorphous polymers, and
further that these configurations correspond quantitatively with those of the
unperturbed state discussed above.”The evidence comes from a variety of
sources: from investigations on rubber elasticity, chemical cyclization equi-
libria, thermodynamics of solutions, and, most recently, from neutron scatter-
ing studies on protonated polymers in deuterated hosts (or vice versa).” The
investigations last mentioned go further. They confirm the prediction made
twenty-five years ago that the excluded volume perturbation should be
annulled in the bulk amorphous state.” The excluded volume effect is therefore
an aberration of the dilute solution, which, unfortunately, is the medium
preferred for physicochemical characterization of macromolecules.

Knowledge gained through investigations, theoretical and experimental,
on the spatial configuration and associated properties of random macro-
molecular chains acquires added significance and importance from its direct,
quantitative applicability to the amorphous state. In a somewhat less quanti-
tative sense, this knowledge applies to the intercrystalline regions of semi-
crystalline polymers as well. It is the special properties of polymeric materials
in amorphous phases that render them uniquely suited to many of the functions
they perform both in biological systems and in technological applications.
These properties are intimately related to the nature of the spatial configura-
tions of the constituent molecules.

Investigation of the conformations and spatial configurations of macro-
molecular chains is motivated therefore by considerations that go much beyond
its appeal as a stimulating intellectual exercise. Acquisition of a thorough
understanding of the subject must be regarded as indispensable to the com-
prehension of rational connections between chemical constitution and those

properties that render polymers essential to living organisms and to the needs

of man.
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