Albert Fert, UMR CNRS/Thales, Palaiseau, and Université Paris-Sud, Orsay, France

The origin, the development and the future of spintronics

Magnetic switching and microwave generation by spin transfer, spintronics with semiconductors, molecular spintronics, etc

Spin dependent conduction in ferromagnetic metals

Mixing impurities A and B with opposite or similar spin asymmetries: *the pre-concept of GMR*

Molecular Beam Epitaxy (growth of metallic multilayers) Magnetic multilayers

Magnetic multilayers

P. Grünberg, 1986 \rightarrow antiferromagnetic interlayer coupling

P. Grünberg, 1986 \rightarrow antiferromagnetic interlayer coupling

• Giant Magnetoresistance (GMR) (Orsay, 1988, Fe/Cr multilayers, Jülich, 1989, Fe/Cr/Fe trilayers)

• Giant Magnetoresistance (GMR) (Orsay, 1988, Fe/Cr multilayers, Jülich, 1989, Fe/Cr/Fe trilayers)

Anti-parallel magnetizations (zero field, high resistance)

Parallel magnetizations (appl. field, low resist.)

Condition for GMR: layer thickness ≈ nm The Magnetic Recording System

1997 (before GMR) : 1 Gbit/in², 2007 : GMR heads ~ 300 Gbit/in²

Arrays of GMR biochips for analysis of biomolecules (example: antigens are trapped by antibodies and also decorated by other antibodies labelled by magnetic nanoparticles which are detected by a GMR sensor)

9 μ m (Philips), 1 μ m (Santa Barbara)

 \rightarrow Probe arrays for analysis of thousands of different targets in parallel

Magnetic Tunnel Junctions, Tunneling Magnetoresistance

Applications: - read heads of Hard Disc Drive

- M-RAM (Magnetic Random Access Memory)

Epitaxial magnetic tunnel junctions (MgO, etc)

FIG. 2. Tunneling density of states on each atomic layer at k_{\parallel} =0 for the Co/MgO/Co tunnel junction. Top panel: parallel spin alignment, bottom panel: antiparallel spin alignment

Mathon and Umerski, PR B 1999 Mavropoulos et al, PRL 2000 Butler et al, PR B 2001 Zhang and Butler, PR B 2004 [bcc Co/MgO/bcc Co(001)]

FIG. 2. Tunneling density of states on each atomic layer at k_{\parallel} =0 for the Co/MgO/Co tunnel junction. Top panel: parallel spin alignment, bottom panel: antiparallel spin alignment

Beyond MgO

MgO, ZnSe (Mavropoulos et al, PRL 2000), etc

 $\rightarrow \Delta_1$ symmetry (sp) slowly decaying

→ tunneling of Co majority spin electrons

SrTiO₃ and other d-bonded insulators (Velev et al , PRL 95, 2005; Bowen et al, PR B 2006)

 $\rightarrow \Delta_5$ symmetry (d) slowly decaying

→ tunneling of Co minority spin electrons

in agreement with the negative polarization of Co found in TMR with SrTiO₃,TiO₂ and Ce_{1-x}La_xO₂ barriers (de Teresa, A.F. et al, Science 1999)

FIG. 2. Tunneling density of states on each atomic layer at k_{\parallel} =0 for the Co/MgO/Co tunnel junction. Top panel: parallel spin alignment, bottom panel: antiparallel spin alignment

Beyond MgO

MgO, ZnSe (Mavropoulos et al, PRL 2000), etc

 $\rightarrow \Delta_1$ symmetry (sp) slowly decaying

→ tunneling of Co majority spin electrons

SrTiO₃ and other d-bonded insulators (Velev et al , PRL 95, 2005; Bowen et al, PR B 2006)

 $\rightarrow \Delta_5$ symmetry (d) slowly decaying

→ tunneling of Co minority spin electrons

in agreement with the spigative polarization of the spigative SrTiO, TiO, and Ce, La O, barriers "Tunneling: SP of the DOS for the (de Teresa, A.F. et al, Science 1999) symmetry selected by the barrier

¤Electrical conduction: SP depends on scatterers, impurities,...

Spin Transfer (magnetic switching, microwave generation)

Spintronics with semiconductors

Spintronics with molecules

Spin Transfer (magnetic switching, microwave generation)

Spintronics with semiconductors

Spintronics with molecules

Introduction:

spin accumulation

and spin currents

Spin injection/extraction at a NM/FM interface (beyond ballistic range)

Spin injection/extraction at a Semiconductor/FM interface

Spin injection/extraction at a Semiconductor/FM interface

Spin transfer

(J. Slonczewski, JMMM 1996, L. Berger, PR B 1996)

Spin transfer

(J. Slonczewski, JMMM 1996, L. Berger, PR B 1996)

Experiments on pillars

E-beam lithography + etching

a) First regime (low H): irreversible switching (CIMS)

b) Second regime (high H): steady precession (microwave generation)

Switching of reprogrammable devices (example: MRAM)

promising demonstrations by several companies)

- - increase of power by synchronization of

Experiments of STO synchronization by electrical connection

(B.Georges, AF et al, CNRS/Thales and LPN-CNRS, preliminary results)

Experiments of STO synchronization by electrical connection

(B.Georges, AF et al, CNRS/Thales and LPN-CNRS, preliminary results)

Experiments of STO synchronization by electrical connection

(B.Georges, AF et al, CNRS/Thales and LPN-CNRS, preliminary results)

Spintronics with semiconductors

and molecules

Spintronics with semiconductors

Magnetic metal/semiconductor hybrid structures

Ferromagnetic semiconductors (FS)

GaMnAs ($T_c \rightarrow 170K$) and R.T. FS

Electrical control of ferromagnetism

TMR, TAMR, spin transfer (GaMnAs)

Field-induced metal/insulator transition

Spintronics with semiconductors

Magnetic metal/semiconductor hybrid structures

Ferromagnetic semiconductors (FS)

GaMnAs ($T_c \rightarrow 170K$) and R.T. FS

Electrical control of ferromagnetism

TMR, TAMR, spin transfer (GaMnAs)

Field-induced metal/insulator transition

Spin Field Effect Transistor ?

Semiconductor channel between spin-polarized source and drain transforming spin information into large (?) and tunable (by gate voltage) electrical signal Nonmagnetic lateral channel between spin-polarized source and drain

Semiconductor channel:

« Measured effects of the order of 0.1-1% have been reported for the change in

voltage or resistance (between P and AP).... », from the review article

« Electrical Spin Injection and Transport in Semiconductors » by BT Jonker

and *ME Flatté* in Nanomagnetism (ed.: DL Mills and JAC Bland, Elsevier 2006)

Nonmagnetic lateral channel between spin-polarized source and drain

 $\overrightarrow{} P = AP$

Semiconductor channel:

« Measured effects of the order of 0.1-1% have been reported for the change in

Semiconductor channel

voltage or resistance (between P and AP).... », from the review article

« Electrical Spin Injection and Transport in Semiconductors » by BT Jonker

Nonmagnetic lateral channel between spin-polarized source and drain

 $\rightarrow P$ $\leftarrow AP$

Semiconductor channel:

« Measured effects of the order of 0.1-1% have been reported for the change in

Semiconductor channel

voltage or resistance (between P and AP).... », from the review article

« Electrical Spin Injection and Transport in Semiconductors » by BT Jonker

: the contrast between P (on) and AP (off),
$$\frac{\Delta R}{R^P} = \frac{\gamma^2 / (1 - \gamma^2)}{1 + \tau_n / \tau_{sf}}$$
, is large if $\tau_n < \tau_{sf}$

Nanotubes (also graphene, other molecules): $pin - orbit \rightarrow spin$ lifetime τ_{sf} is $long(\approx 50 ns)$ high velocity $v \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is short $(<\tau_{sf})$ Semiconductor s: τ_{sf} can be long (for $n \approx 10^{17} el/cm^3$) but v is small $\rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $long(>>\tau_{sf})$

the contrast between P(on) and AP(off),
$$\frac{\Delta R}{R^P} = \frac{\gamma^2 / (1 - \gamma^2)}{1 + \tau_n / \tau_{sf}}$$
, is large if $\tau_n < \tau_{sf}$

Nanotubes (also graphene, other molecsmall) $spin - orbit \rightarrow spin$ lifetime τ_{sf} is $long(\approx 50 ns)$ high velocity $v \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $short (< \tau_{sf})$ Semiconductor s: τ_{sf} can be long (for $n \approx 10^{17} el/cm^3$) but v is $small \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $long(>>\tau_{sf})$ Solution for semiconductors:

<u>shorter L ?, larger transmission</u> t_r ?

: the contrast between P (on) and AP (off),
$$\frac{\Delta R}{R^P} = \frac{\gamma^2 / (1 - \gamma^2)}{1 + \tau_n / \tau_{sf}}$$
, is large if $\tau_n < \tau_{sf}$

Nanotubes (also graphene, other
molecyline)
$$spin - orbit \rightarrow spin$$
 lifetime τ_{sf} is $long(\approx 50ns)$
high velocity $v \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $short(<\tau_{sf})$
Semiconductor
s: τ_{sf} can be long (for $n \approx 10^{17} el/cm^3$)
but v is $small \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $long(>>\tau_{sf})$
Solution for semiconductors:
shorter L ?, larger transmission
 t_r ?

: the contrast between P (on) and AP (off),
$$\frac{\Delta R}{R^P} = \frac{\gamma^2 / (1 - \gamma^2)}{1 + \tau_n / \tau_{sf}}$$
, is large if $\tau_n < \tau_{sf}$

Nanotubes (also graphene, other
molecules)
$$spin - orbit \rightarrow spin$$
 lifetime τ_{sf} is $long(\approx 50ns)$
high velocity $v \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $short (<\tau_{sf})$
Semiconductor
s: τ_{sf} can be long (for $n \approx 10^{17} el/cm^3$)
but v is $small \rightarrow \tau_n = \frac{2L}{v\bar{t}_r}$ is $long(>>\tau_{sf})$
Solution for semiconductors:
shorter L ?, larger transmission
 t_r ?
Next challenge for molecules:

spin control by gate

Summary

Already importantaplications of GMR/TMR(HDD, MRAM..) and nowpromising new fields

-Spin transfer for magnetic switching and microwave generation

-Spintronics with semiconductors, molecules or nanoparticles

SILICON ELECTRONICS

SPINTRONICS

Acknowledgements to

M. Anane, C. Barraud, A. Barthélémy, H. Bea, A. Bernand-Mantel, M. Bibes, O. Boulle, K.Bouzehouane, O. Copi, V.Cros, C. Deranlot, B. Georges, J-M. George, J.Grollier, H. Jaffrès, S. Laribi, J-L. Maurice, R. Mattana, F. Petroff, P. Seneor, M. Tran F. Van Dau, A. Vaurès

Université Paris-Sud and Unité Mixte de Physique CNRS-Thales, Orsay, France

P.M. Levy, New York University, A.Hamzic, Zagreb University

B. Lépine, A. Guivarch and G. Jezequel

Unité PALMS, Université de Rennes, Rennes, France

G. Faini, R. Giraud, A. Lemaître: CNRS-LPN, Marcoussis, France

L. Hueso, N.Mathur, Cambridge

J. Barnas, M. Gimtra, I. Weymann, Poznan University