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In 1955 I was a Lecturer in Physics at the University of Cape Town when
the Hospital Physicist at the Groote Schuur Hospital resigned. South
African law required that a properly qualified physicist supervise the use
of any radioactive isotopes, and since I was the only nuclear physicist in
Cape Town, I was asked to spend 1 1/2 days a week at the hospital
attending to the use of isotopes, and I did so for the first half of 1956. I was
placed in the Radiology Department under Dr. J. Muir Grieve, and in the
course of my work I observed the planning of radiotherapy treatments. A
girl would superpose isodose charts and come up with isodose contours
which the physician would then examine and adjust, and the process
would be repeated until a satisfactory dose-distribution was found. The
isodose charts were for homogeneous materials, and it occurred to me that
since the human body is quite inhomogeneous these results would be quite
distorted by the inhomogeneities - a fact that physicians were, of course,
well aware of. It occurred to me that in order to improve treatment
planning one had to know the distribution of the attenuation coefficient of
tissues in the body, and that this distribution had to be found by measure-
ments made external to the body. It soon occurred to me that this informa-
tion would be useful for diagnostic purposes and would constitute a
tomogram or series of tomograms, though I did not learn the word
“tomogram” for many years.

At that time the exponential attenuation of X- and gamma-rays had been
known and used for over sixty years with parallel sided homogeneous slabs
of material. I assumed that the generalization to inhomogeneous materials
had been made in those sixty years, but a search of the pertinent literature
did not reveal that it had been done, so I was forced to look at the problem
ab initio. It was immediately evident that the problem was a mathematical
one which can be seen from Fig. 1. If a fine beam of gamma-rays of
intensity I, is incident on the body and the emerging intensity is I, then the
measurable quantity g = In(I0/I) =  where f is the variable absorp-
tion coefficient along the line L. Hence if f is a function in two dimensions,
and g is known for all lines intersecting the body, the question is: “Can f be
determined if g is known ?“. Again this seemed like a problem which would
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Fig. 1
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Fig. 2

Further work occurred intermittently over the next six years. Using
Fourier expansions of f and g, I obtained equations like Abel’s integral
equation but with more complicated kernels, and I obtained results like
equation (1), but with more complicated integrands. However, they were
also integrals from r to  a point which I shall return to. These integrals
were not too good for data containing noise, so alternative expansions
were developed which dealt with noisy data satisfactorily. By 1963 I was
ready to do an experiment on a phantom without circular symmetry with
the apparatus shown in Fig. 3. The two cylinders are two collimators which
contain the source and the detector, and which permit a 5mm beam of
C o60 gamma-rays to pass through the phantom which is the disc in between
them. At that time I was approached by an undergraduate, David Hen-
nage, who wanted to know whether I had a numerical problem for him to
bark on so  that  he  could learn FORTRAN and learn how to  use  a
computer. Since he had not had experience of dealing with data in which
the principal source of error was statistical, this seemed a good chance for
him to learn that too by helping take the data. Final data were taken over
two days in the summer of 1963, the calculations were done, and the
results are shown in Figs. 4 a and b. Figure 4 a shows the phantom, and
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Fig. 3

this was quite a hybrid. The outer ring of aluminum represents the skull,
the Lucite inside it represents soft tissue, and the two aluminum discs
represent tumors. The ratio of the absorption coefficients of aluminum
and lucite is about 3, which is very much greater than the ratio of the
absorption coefficients of abnormal and normal tissue. The ratio of 3 was
chosen in an attempt to attract the attention of those doing what would
now be called emission scanning using positron emitting isotopes, a subject
then in its infancy. This was about the ratio between the concentration of
radioisotope in abnormal tissue and muscle on the one hand and in normal
tissue on the other. The mathematics of emission scanning is of course the
same as transmission scanning after an obvious correction for absorption.
The right side of the slide shows the results plotted as a graph of attenua-
tion coefficient as a function of distance along the line OA. Similar graphs
were made along other lines. The full curves are the true values, the dots
are the calculated values, and the agreement is quite good. The results
could have been presented on a grey scale on a scope, but the graphs were
thought to be better for publication.

Publication took place in 1963 and 1964 (1, 2). There was virtually no
response. The most interesting request for a reprint came from a Swiss
Centre for Avalanche Research. The method would work for deposits of
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Fig. 4 a

snow on mountains if one could get either the detector or the source into
the mountain under the snow!

My normal teaching and research kept me busy enough so I thought
very little about the subject until the early seventies. Only then did I learn
of Radon’s (3) work on the line integral problem. About the same time I
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learnt that this problem had come up in statistics in 1936 at the Depart-
ment of Mathematical Statistics here in Stockholm where it was solved by
Cramer and Wold (4). I also learnt of Bracewell’s work (5) in radioastron-
omy which produced the same form of solution as Cramer and Wold had
found, of De Rosier and Klug’s (6) (1968) work in electron microscopy,
and of the work of Rowley (7) (1969) and Berry and Gibbs (1970) in optics.
Last, but by no means least, I first heard of Hounsfield and the EMI-
scanner, about which you will be hearing shortly. Since 1972 I have been
interested in a number or problems related to the CT-scanning problem or
stemming from it, and I would like to tell you about some of them.

As I mentioned earlier the solution the Radon’s problem which I found
was in terms of integrals which extend from the radius at which the
absorption coefficient is being found to the outer edge of the sample.
What this means is that if one wishes to find the absorption coefficient in
an annulus one needs only data from lines which do not intersect the hole
in the annulus. This is known as the Hole Theorem and it is an exact
mathematical theorem which can be proved very simply. However, as I
have mentioned, when one applies my integrals to real data containing
noise, the noise from the outer observations is amplified badly as one goes
deeper and deeper into the sample, so the integrals as they stand are not
useful in practice. This process of working from the outside in is known as
“peeling the onion”, and several algorithms for peeling the onion have
been tried. All show the same feature, namely, that noise from the outer
data propagates badly as one goes deeper and deeper into the sample.
However, to the best of my knowledge, no one has produced a closed form
solution to Radon’s problem which includes the Hole Theorem and from
which it can be proved that noise from the outside necessarily propagates
badly into the interior. (Doyle and I published a closed form solution to
Radon’s problem which turned out to be wrong. A retraction will be
published soon.) (9)

A solution containing the hole theorem for which noise did not propa-
gate into the interior would be extremely valuable for CT-scanning. First it
would reduce the dose administered to a patient by not passing X-rays
through a region of no interest, i.e. the hole. Second it could be used to
avoid regions in which sharp changes in absorption coefficient occur.
These sharp changes necessarily produce overshoots which cloud the final
image. In an extreme case consider a patient who by accident or by some
medical procedure has in his body a piece of metal. This distorts a CT scan
of a plane containing the metal beyond recognition. The hole theorem
could be used to avoid the piece of metal. Less extremely, an interface
between bone and soft tissue introduces overshoots which distort the
image of the soft tissue. The hole theorem could be used to avoid the bone
and the distortion.

Here then is a question which needs an answer. An unfavorable answer
would leave us no worse off than we now are. A favorable answer would
result in an improvement of imaging.
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In my 1963 paper I had mentioned, but not very favorably, that protons
could be used for scanning instead of X-rays. In 1968 my friend and
colleague Andreas Koehler started producing some beautiful radio-
grams (10) using protons, and thinking about his work removed some of
the doubts I had previously had about using protons for tomography.

The distinction between protons and X-rays is illustrated in Fig. 5. The
number-distance curve for X-rays is the familiar exponential curve. For
protons, there is a slow decrease caused by nuclear absorption followed by
a very sharp fall-off. Most of the protons penetrate a distance into the
material then all that are left stop in a short distance at what is called the
range of the protons. It is this sharp fall-off which makes protons very
sensitive to small variations in thickness or density along their paths. A
comparison of the two curves at the range is a rough measure of this
sensitivity to thickness or density changes. Others were thinking about the
same thing and Crowe et al (11) at Berkeley produced a tomogram using
alpha-particles in 1975, using the not inconsiderable arsenal of equipment
at a high-energy physics laboratory. Koehler and I (12) made a tomogram
of a simple circularly symmetrical sample to show two things:
1. that very simple equipment could be used, and
2. that we could easily detect 1/2%: density differences with that equip-
ment

Fig. 5
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Fig. 6 b



As it happened, we were able to detect density differences of about 0.1%
or less caused by machining stresses in our Lucite sample and diffusion of
water into and out of the Lucite (13). More recently this work has been
continued by Hanson and Steward (14) and their co-workers at Los Alamos,
and I am able to show you some of their results. They have recently made
tomograms of human organs. Fig. 6a is an X-ray scan of a normal brain
made with a A2020 scanner at a dose of about 9 rad. Dr. Steward (14) has
observed and made density measurements which show that water and
electrolyte are lost by white tissue within four hours after death so density
differences between grey and white matter disappear. Fig. 6b is a proton
scan of the same sample made at a dose of 0.6 rad, and it is roughly
as good as the X-ray scan. Figs. 7a and b show, respectively, an X-ray scan
at a dose of 9 rad and a proton scan at 0.6 rads of a heart with a myocardial
infarction fixed in formalin. According to Dr. Steward, fixing in formalin
does not alter the relative stopping powers of the tissues of the heart.
Again the pictures are of about the same quality. The time for taking the
data was about an hour, but the LAMF accelerator is pulsed and is on for
only 6% of the time. A continuous beam would have produced the same
data in about four minutes - roughly the same time as the original EMI-
scanner. I would like to acknowledge my indebtedness to Hanson and
Steward et al. for making their results available to me.

Why use protons? First there is the question of dose. The dose in
Hanson and Steward’s work about 0.6 rad as distinct from to 9 rads
required for the X-ray scans. This is in agreement with theoretical calcula-
tions (15) that the dose required for proton scans is five to ten times less
than for X-ray scans for the same amount of information. Second, the
mechanism by which protons are brought to rest is different from the
mechanisms by which X-rays are absorbed or scattered, so one ought to see
different things by using the different radiations, particularly the distribu-
tion of hydrogen. Koehler and I have indeed found a reversal of contrast
between proton and X-ray scans on two occasions, and this is expected from
theory.

You know how some people fuss about the high cost of CT-scanners, so
you can imagine what they would say if one suggested that the X-ray tube
in the scanner should be replaced by a much more expensive cyclotron! Of
course they would be right, but only if proton scanning is viewed in the
narrow context of diagnostics. Instead of looking at the number-distance
curve which I showed when comparing X-rays and protons, let us look at
the ionization-distance curve which is the thing that matters for therapy.
This is shown in Fig. 8. You will see that the curve is peaked (the Bragg
peak) near the end of the range and then falls off very sharply, so that
there is virtually no ionization beyond the end of the range. Both of these
facts are of importance in therapy as was pointed out by R. R. Wilson (16)
in 1946, and as has been shown by treatments of a number of different
conditions at Uppsala, Harvard and Berkeley. In fact, protons are far
superior to X-rays for the treatment of some conditions. So one can





envisage a large metropolitan area as having a 250 MeV proton accelerator
with a number of different ports, say ten, at which patients could be
treated simultaneously (17). If one of these ports was devoted to proton
tomography, the marginal cost of such tomography would not be great. In
exploring these possibilities it is essential that diagnostic radiologists and
therapeutic radiologists work together.

Most recently I have been interested in some mathematical topics which
I would like to discuss without mathematical details. I have presented
Radon’s problem in the form in which it is usually given in CT-scanning,
namely, how does one recover a function in a plane given its line integrals
over all lines in the plane. This can be generalized to three-dimensions as
can be seen in Fig. 9. This shows a sphere in which a function is defined,
and a plane intersecting that sphere. Suppose that the given information is
the integrals of the function over all planes intersecting the sphere, then
the questions is “Can the function be recovered from these integrals?”
Radon provided an affirmative answer and a formula for finding the
function. It turns out that this formula is simpler than in the case of two-
dimensions, and it has applications in imaging using Nuclear Magnetic.
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Fig. 9

Resonance (N.M.R.) rather than X-rays. The generalization to n-dimen-
sions follows in a straightforward way for Euclidean space and was given
by Radon. The few mathematicians who knew of Radon’s work before the
nineteen sixties applied his results to the theory of partial differential
equations. They also generalized his results to integration over circles or
spheres of constant radius and to certain ellipsoids. Generalizations to
spaces other than Euclidean were made, for example, by Helgason (18) and
Gelfand et al (19) in the sixties.

In my 1964 paper I gave a solution to the problem of integrating over
circles of variable radius which pass through the origins as shown in Fig.
10. Recently Quinto and I (20) have given much more detailed results on
this problem generalized to n-dimensional Euclidean space, and we have
applied these results to obtain some theorems about the solutions of
Darbox’s partial differential equation. There is an intimate connection

Fig. 10
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between our results and Radon’s results, and we are presently attempting
to find more general results which relate the solutions of Radon’s problem
for a family of surfaces to the solution of Radon’s problem for another
family of surfaces related to the first in a particular way.

What is the use of these results? The answer is that I don’t know. They
will almost certainly produce some theorems in the theory of partial
differential equations, and some of them may find application in imaging
with N.M.R. or ultrasound, but that is by no means certain. It is also beside
the point. Quinto and I are studying these topics because they are interest-
ing in their own right as mathematical problems, and that is what science is
all about.

Of the many people who have influenced me beneficially, I shall name
only a few. The late Professor R. W. James F.R.S. taught me a great deal,
not only about physics, when I was a student and a young Lecturer in his
Department in Cape Town. Andreas Koehler, Director of the Harvard
Cyclotron Laboratory, has provided me with friendship, moral support,
and intellectual stimulation for over twenty years. On the domestic side are
my parents, now deceased, and my immediate family. My wife Barbara
and our three children have not only put up with me, they have done so in
a loving and supportive way for many years. To these people and others
unnamed I shall be grateful to the end of my life.
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