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A preliminary measurement of the
fine structure constant based on atom interferometry

Andreas Wicht,  Joel M. Hensley, Edina Sarajlic and Steven Chu
Physics Department, Stanford University, Stanford, CA 94305

Using an atom interferometer method, we measure the recoil velocity of cesium due to the
coherent scattering of a photon. This measurement is used to obtain a value of h/MCs and the fine

structure constant, α. The current fractional uncertainty is ∆α/α = 7.4 × 10-9.

1.  Introduction

The fine structure constant α = µ0ce2/2h, where µ0 = 4π × 10-7 H/m is the  permeability of
the vacuum, c is the speed of light, e is the electron charge, and h is Planck s constant, sets the
scale of electromagnetic interactions. Its importance is evidenced by the fact that it appears
interwoven in many measurements of fundamental physical constants [1,2]. At present, the most
accurate determinations of α span the domain of atomic physics, mesoscopic and macroscopic
condensed matter physics, and elementary particle physics. Comparison of various accurate
measurements of α constitute one of the most demanding tests of the consistency of physics. A
summary of the most accurate determinations of α, along with our preliminary value from this
work, is shown in Fig. 1. It is interesting to note that the 4 most accurate determinations of this
constant follow directly from experimental work that have been awarded Nobel Prizes.

The fine structure constant can be written as
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where the Rydberg constant R∞ [1], and the mass ratios MCs/mp [3], and mp/me [1], have been
determined with accuracies of 0.008, 0.20, and 2.1 ppb respectively. Thus, a measurement of
h/MCs of comparable precision, in conjunction with the other measured quantities, yields an
improved value of α.

2. Experimental method
We obtain a value of h/MCs by measuring the photon recoil velocity. Our method has

been described in detail elsewhere [4,5,6].  The method we have developed is summarized as
follows. Consider an atom moving with momentum v and in the ground state |g〉 that is excited
by a π-pulse into excited state |e〉. The atom recoils with a velocity vrec = hk/M. Energy

conservation determines the resonance condition

ω - ωeg = k⋅⋅⋅⋅v + hk2/2M,                                                     (2)
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where ωeg is the energy separating the states |g〉 and |e 〉.  If the recoiling atom is stimulated back

down to the ground state by a counter-propagating photon of momentum hk′, the resonance

condition for this photon is

 ω′ - ωeg  = - k′⋅⋅⋅⋅v - hk⋅⋅⋅⋅k′/M - hk′2/2M.                                 (3)

The two frequencies ω and ω′ are shifted by an amount

 ω - ω′ = (k + k′)⋅⋅⋅⋅v + (h/2M)(k + k′)2.                                 (4)

The term ωrec = 2πfrec ≡ hk2/M is defined as the recoil frequency and vrec ≡ hk/M is the

recoil velocity. Since the frequency of the light used to induce the transition has been accurately
measured [7], ωrec can be determined if the velocity of the atoms is known. The recoil shift
appears as a spectral doublet in saturation absorption spectroscopy, which selects atoms with
zero velocity with respect to counter-propagating laser beams [8].

The velocity dependent term in Eq. 4 can also be eliminated by replacing the 2 π-pulses
with 2 pairs of  π/2-pulses as shown in Fig. 2. This so-called Ramsey-Bord  interferometer was
first used as an extension of the Ramsey method of separated oscillatory fields into the optical
domain [9]. Since the sequence of 4 π/2-pulses creates two interferometers, the photon recoil
measurement is transformed into a differential measurement of phase differences between two
atom interferometers. This configuration has several advantages over a measurement based on
two π-pulses. (i) The recoil shift is independent of the atom s initial velocity, the acceleration
due to gravity, and all other shifts that are position independent (e.g. if the external reference
oscillator is not set equal to ωeg) because of the differential nature of the measurement. (ii) The
frequency resolution is determined by the time between each pair of π/2-pulses while the
duration of the π/2-pulses determines the spectral width of the pulses. Thus, by using fairly short
π/2 pulses, a relatively large number of atoms in the atomic fountain can be addressed without
sacrificing frequency resolution.

Using this interferometer configuration as a basic starting point, we improve the
resolution of the measurement in several ways. (i) The precision of this interferometer is greatly
increased by inserting N π-pulses between the two sets of π/2-pulses. These π-pulses increase the
spatial separation of the end points of the two interferometers and have the effect of increasing
the recoil frequency shift to (N+1) ω rec. (ii) The measurement time of the interferometer is
extended by doing the experiment in an atomic fountain.[10] The atoms are launched with
moving molasses  where the polarization gradients in the optical molasses beams move with

respect to the laboratory frame of reference.[11] The optimum time between π/2-pulses for our
experiment is 0.12 seconds. (iii) In order to use the long measurement times made available with
an atomic fountain, both atomic states should be stable against radiative decay. The ground and
excited states are replaced by two ground states, and a two-photon Raman transition with
counter-propagating beams is used to impart photon recoils with kL→ keff = k1-k2, where k1, k2

are the wavevectors of the counter-propagating photons as defined in Fig. 3. The resulting
Doppler-sensitive Raman resonance is determined by the microwave frequency difference
between the two beams. Since this difference frequency can be phase locked to a stable
microwave source, this method gives us twice the Doppler sensitivity of an optical transition
with sub-milliHertz frequency resolution. (iv) Our current atom interferometer uses an adiabatic
method of transferring momenta to the atoms first introduced by Gaubatz, et al. [12].
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This form of adiabatic passage employs time-delayed and resonant light fields to
efficiently transfer atoms between two states. By generating the time delayed pulses as shown in
Fig. 3 with acousto-optic modulators, we were able to tailor the shape of the pulses to construct
an atom interferometer [5]. The efficiency of the coherent transfer is ~94%, allowing us to
measure the photon recoil with the two interferometers separated by 120 single photon momenta
(N = 30 π-pulses).

A second benefit in switching from off-resonant Raman pulses [4] to adiabatic passage
[5] is that the interferometer fringe contrast after many π-pulses is preserved. The adiabatic
pulses use σ+ polarized light tuned between the two 6 S1/2 , |F = 3 , mF = 0〉 and |F = 4 , mF = 0〉
ground states and the 6P1/2, |F ′ = 3 , mF ′= +1〉 excited state. Atoms that are not coherently
transferred fall into other Zeeman sublevels and most of them are optically pumped to the ground
states |4,+4〉, |4,+3〉 and |3,+3〉 where they can no longer be excited by the σ+ light tuned to the
F′=3 level. The small fraction of atoms that fall incoherently back into the |3,0〉 or |4,0〉 states do
not cause a net average phase shift.

We calculate the phase shift of each path of the atom interferometer using Feynman s path
integral formulation of quantum mechanics [13]. In this formulation, the phase shift is divided
into two contributions. The first contribution is due to the free evolution of the wavefunction
∆Φfree = Scl /h, given by
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1
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2

mv m[g g(z)]z(t)Cl
2

ih
h

h= − + −
∫ δ ω ,                        (5)

where the integral is over the classical trajectory. The integrand (Lagrangian) includes terms due
to the kinetic energy, the gravitational energy including a gravity gradient, and the internal
energy state of the atom. In our measurement, the two interferometers are separated by ~5 cm
and experience a ~8 ppb difference in the gravitational potential. This difference yields a ~10
ppb correction to the measured phase shift [14,15].

The second contribution to the phase shift is due to the interaction of the atoms with the
optical field. In the short pulse limit, one can show [13] that for the transitions |g〉 → |e〉 and |e〉
→ |g〉, there is an additional phase term exp[+i(keffz - ωLt +φL)] and exp[- i(keffz - ωLt +φL)],
respectively, where keff is the effective k-vector of the Raman pulse, z is the position of the
atomic wavefunction at time t, ωL is the optical frequency, and φL any additional phase factor of
the light. The terms keff, z, ωL, and φL are all functions of time.
For the transitions |g〉 → |g〉 and |e〉 → |e〉, there is no  added term.

The phase of each atom interferometer in Fig. 2 (with 30 added π-pulses) is measured in
a manner analogous to the separated oscillatory field method due to Ramsey. In a Ramsey
measurement, the phase difference between two states of the atom is compared to the phase of
microwave oscillator. If the number of cycles of atomic phase that have accrued during the time
between the π/2-pulses matches the number of cycles of phase of the microwave oscillator, an
atom initially in state |g〉 is put in state |e〉. If the frequency of the microwave oscillator is
scanned near the resonance condition, the atomic population oscillates between |e〉 and |g〉. The
frequency difference between the two atomic states is determined by locating the center of this
central Ramsey fringe.
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In the case of our atom interferometer, the phase difference between the two arms is more
complicated, as described above, but the principle is still the same. If the phase of the local
oscillator tracks exactly the phase difference between the two arms of the interferometer, the
atom originally in state |g1〉 is returned back to its initial state. Any difference in phase accrued
by the microwave oscillator and the two arms of the interferometer produces Ramsey oscillations
between states |g1〉 and |g2〉. By determining the peak of the central fringe of the interferometer,
we measure the ωrec since this quantity limits the location of the central fringe relative to all other
quantities such as the frequency of the light, the ground state hyperfine splitting, acceleration due
to gravity, etc. This measurement requires a microwave oscillator whose frequency can be
changed in a completely phase coherent manner.

The measurement is made less sensitive to experimental imperfections by measuring the
phase difference between the two atom interferometers, Φ1 - Φ2. Systematic effects that are
common to both interferometers are then subtracted out. A second pair of interferometers Φ3 , Φ4

is created by reversing the directions of all the momentum impulses to create a pair of inverted
interferometers. This inversion helps cancel spatially dependent systematic effects such as linear
gradients in the bias magnetic field, non-linear frequency dependent electronic phase shifts, and
laser frequency dependent phase shifts. The photon recoil frequency ωrec is determined from the
phase difference

ΔΦ = [(Φ1 - Φ2) + (Φ3 - Φ4)] = - 8(N+1)(ωrec - ωfixed)T - 4keff|〈δg〉| (T+ T′)T,       (6)

where |〈δg〉| is the average difference in the gravitational potential for the two trajectories, and T′
is time between the 2nd and 3rd π/2-pulses. The quantity, ω f ixed is the value assumed by the local
oscillator. We set ω f ixed = 2π  × 15 006.278 875 based on measurements before the 1998
adjustment of the fundamental constants [1]. The phase shift we measure then gives us the
difference from the previously accepted value and the new value. In calculating the gravity
gradient correction, we evaluate |〈δg〉| by using Eq. 5 to calculate the action S/.

2. Systematic effects
We have searched for a variety of systematic effects by varying many experimental

parameters such as the time between the π/2-pulses, the number of π-pulses, the positions in the
fountain trajectories where the light/atom interactions occur, the intensity and shape of the
optical pulses. We have also changed the frequency offsets, polarization, alignment and
wavefront curvature of the laser beams and varied environmental factors such as the magnetic
bias field and density of hot cesium atoms. A preliminary discussion of potential systematic
effects was given earlier [16]. We present here upper bounds on the systematic effects we have
considered.

2.1 Beam alignment and wavefront curvature

We have developed an alignment procedure that can produce counter-propagating beams
to within ± 15 μrad, corresponding to a 0.23 ppb error in ωrec ~ (k + k′)2. The optical alignment
was observed to drift for about an hour after a re-alignment to roughly 1 ppb from the ideal
alignment. For this reason we choose to correct all our data by 1 ppb with a ± 0.4 ppb estimated
uncertainty in this correction.

Another systematic effect that has to be considered at this level of precision is the Gouy
phase shift of a laser beam in the vicinity of the focal point, ΦG = arctan[λ πωz/ ]0

2 , where ω0
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is the Gaussian beam radius [17].  For ω0 = 1 cm, this phase shift results in a 0.8 ppb correction
in h/M for atoms centered at the waist of the 2 cm diameter beam. To ensure that the beams are
correctly collimated, the positions of the 2m focal length lens was moved 2 to 4 centimeters
away from the collimating position. The change in phase shift with the de-collimation was
measured to be 1.4 ± 3.9 ppb per 1 cm of change in the position of the lens, whereas the lens can
be set to ±0.2 mm uncertainty with the use of a precision optical flat. Possible phase shifts due to
the partial clipping of the Raman beams, optical defects of the mirrors, lenses and windows, and
optical polarization imperfections were also found not be significant.

2.2. Frequency effects

A calculation of h/M from our measurement of the recoil shift requires that the
momentum of the light used in the Raman pulses be accurately known. The optical pulses are
tuned to the Cs D1 transition, which has been measured with high accuracy [7]. The laser used in
our experiment is locked to a cesium reference frequency cell, calibrated against the laser cooled
atoms in the atomic fountain.

The center of the zero-order Ramsey fringe is found by scanning the frequencies of the
final π/2-pulses. If there is a systematic offset in the tuning of the two-photon resonance, each of
the interferometers will have displaced fringes. However, any detuning error will also produce
the same phase error in the momentum reversed interferometer, and the final phase difference
calculated using Eq. 6 is insensitive to this error. This cancellation was tested by varying the
detuning of the final π/2-pulse by ± 20 kHz away from the known resonance. The measured
dependence was -0.29 ± 0.71 ppb/kHz.

The two-photon frequency difference is determined to much higher  accuracy. The
microwave source used in the experiment is referenced to the atomic clock timing signals
broadcast by the United States Naval Observatory and received using a frequency standard with
a LORAN C input. The accuracy of this system is estimated to be better than 1 Hz out of 9.2
GHz.

The atoms accelerate due to gravity in the atomic fountain. This velocity change has to be
properly accounted for in order to insure we are tuned correctly to the two-photon resonance.
The value of g in an adjacent laboratory ~8 meters away, and at the same elevation, is known to
an accuracy of 7 ppb [18]. Thus, we can safely assume that g is known in the h/M laboratory to
better than 1 part in 105. By varying the value of g by ±0.3%, we established an error less than
±0.002 ppb. In our correction due to the gradient in g, we use the value (2.93 ±10) × 10-6  s-2 ,
also measured in the adjacent lab [18]. Because the gradient was not measured in the h/M lab, we
have increased the assigned uncertainty to 10% of the gradient value. Errors due to Raman beam
misalignment with respect to the vertical enter primarily as a Sagnac phase shift (See below).

2.3 Zeeman shifts

The atom interferometer uses the mF = 0 magnetic sublevels of the cesium ground state.
The bias field was set at 72 mG, but the field in the interferometer region had spatial variations
of 1.5 mG, as measured using the atoms in the atomic fountain. To the extent that the normal and
inverted interferometers trace out the same atomic trajectories, the interferometer phase shift
[(Φ1 -Φ2) + (Φ3 -Φ4)] will be insensitive to phase errors caused by the magnetic field. Data taken
between 0 and 600 mG shows that there is no significant correction to non-compensated Zeeman
shifts at the level of 2 ppb.
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2.3 AC Stark shifts

Unequal AC Stark shifts in the two arms of the interferometer can shift the interference
fringes. The AC Stark shifts of concern are of the form Ω2/4∆, where Ω is the Rabi frequency
and ∆ is the detuning of the light from resonance. No unaccounted change in the measured recoil
velocity was observed as the laser frequencies were varied. The detuning studies establish an
upper limit of 0.1 ppb uncertainty due to AC Stark shifts. As an independent, but weaker
constraint, we note that a considerable amount of data was collected using adiabatic transfer
pulses with intensities (and hence Ω2) that differed by a factor of 4. No statistically significant
difference in the recoil value was seen at the 11 ppb level.

The optical wave fronts used in the experiment are actively stabilized. A vibration-
isolated platform is used to measure the beat note of the two Raman beams [19]. This beat note
provides the feedback signal used to compensate for the vibrations of the optical mounts, air
currents, etc. that introduce phase noise into the Raman beams. The frequency difference is kept
phase-locked to a stable microwave reference.

The vibration isolation system used in this experiment requires a tracer beam  that
follows the same optical path as the Raman beams in order to detect any change of optical path
length difference. The frequency  of the tracer beam is chosen to be close enough to the
frequency of the Raman beams to accurately monitor vibrational noise, but far enough detuned
so that the AC Stark shifts are not a problem. The tracer beam was turned on 1.8 msec before
each π/2 pulse so that the lock in the vibration isolation feedback system has enough time to
settle. An AC Stark shift due to the tracer beam should subtract out of the final phase shift
measurement since the shift would be common to the normal and inverted interferometers. To
verify that there was no effect, we increased the intensity of tracer beam by a factor of 20 and left
the tracer beam on all the time. With these changes, any AC Stark shift would be magnified by a
factor of 6700. The photon recoil value remained the same to within 10 ± 25 ppb. Accounting for
the enhancement factor, the tracer beam must contribute a shift of less than a 0.004 ppb.

2.4 Coriolis forces

Phase shifts may arise because the atom interferometer may have some spatial area due to
misalignment of an atom trajectory with respect to the direction of the momentum impulses
induced by the Raman pulses, as shown in Fig. 4.  This area will cause a Sagnac phase shift ∆φ =
2(M/h)ΩΩΩΩ⋅⋅⋅⋅A, where ΩΩΩΩ  is the angular velocity of the earth and A is the enclosed area. If the

transverse spread of velocities in the atomic fountain is symmetric with respect to the direction
of the Raman pulses, this effect can be minimized. The effect is further decreased because the
areas are equal so each pair of interferometers nearly cancels and the inverted pair further
cancels the normal  pair.

To verify the insensitivity to rotations, data were taken with intentionally misaligned
launch and Raman beam directions. To further amplify any gyroscope effect, the entire
experimental apparatus was rocked back and forth sinusoidially with maximum angular velocity
~19 times earth s rotation. With the systematic effect magnified in this way, we established an
upper limit ± 1.0 ppb uncertainty due to Coriolis forces.

2.5 Missed photon kicks
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A crucial ingredient in the precision of our measurement is the addition of N π-pulses in
between the two sets of π/2-pulses. The experiment demands that all the atoms receive exactly N
additional photon recoils, and a phase error will result if some of the atoms miss one or more
momentum changing π-pulses.

If an atom were to miss a Doppler-sensitive π-pulse, it would be in the bright state at the
beginning of the next pulse. The next π-pulse would then induce incoherent, single-photon
transitions resulting in no net (averaged) phase shift in the interferometer. Also, since the
frequency width of the π-pulses is on the order of the recoil shift, an atom missing two or more
π-pulses would be far enough off-resonance that it would not be affected by succeeding π-pulses.

The most serious concern is that some of the atoms may experience a Doppler-free
transition induced by two co-propagating beams, where one of the beams is due to a reflection
from an optical surface. To minimize the number of missed recoils from back reflections, we tilt
all the optics in the near vicinity of the vacuum can. We also avoid illuminating the atoms with
π-pulses close to the apogee of their trajectory where they would be most sensitive to Doppler
free transitions.

An atom that misses one momentum impulse will be drastically shifted in phase by ∆φ =
(hk2

eff/MCs)T. If the fraction of atoms that miss a pulse is small, we can choose the time T so that

∆φ is modulo 2π. With this choice of T, the fringe pattern with a small number of missed recoils
will be the same as the fringe pattern with no missed recoils.

As a check on our ability to eliminate the chance of missed photon kicks, 30 π-pulses
were added near the apogee of the atomic trajectory so that the laser would have a 100× higher
probability of exciting a Doppler-free transition as compared to normal operating conditions. We
then scanned the time interval T over a range where ∆φ changed by 2π. The phase shift observed
had an amplitude of 17 ± 16 ppb, which is consistent with no phase shift. Because of the
enhancement factor of 100, we place a 0.16 ppb uncertainty on this error.

2.6 Phase shifts due to digitization errors

Every time an atom makes a transition between internal states, the position of the atoms
with respect to the wavefront of the light is recorded onto the atomic wavefunction with an
additional phase factor exp[±i(kLz - ωLt +φL)]. The laser frequency must be shifted to keep the
transition in resonance to compensate for the Doppler-shift because of the acceleration due to
gravity and the photon recoil impulses. In the experiment, the laser difference frequency is
shifted while the sum frequency is kept constant. In the process of shifting the laser frequency,
however, the phase shifts in the electronics can be frequency-dependent, leading to errors in the
measurement. In the thesis work of B. Young [6], this systematic effect was on the order of 100
ppb. Since this effect was discovered, we switched to a higher bandwidth frequency synthesizer
with no rf filters on the output. The electronic frequency dependent phase shift was greatly
decreased and the residual shift is 0.0 ± 0.2 ppb.

2.7 Phase errors due to π/2 pulses

If there is a phase error introduced by the π/2-pulses that is independent of the time T
between π/2-pulses, then the phase difference between a pair of atom interferometers (neglecting
the gravity gradient term) will vary as
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∆Φ = Φ1- Φ2 = - 4π (N+1)(ω r ec - ω f ixed)T - φerr .                          (8)

Thus, if the phase shift ∆Φ is measured as a function T, a linear dependence in phase shift is
expected. The slope of the line, - 4π(N+1)(ω r e c  - ω f ixed), yields the recoil velocity and the
intercept at T=0 measures the phase shift error.

Fig. 5 shows the phase difference Φ1- Φ2 plotted for data taken under two conditions.
Curve (a) represents data taken while two independent acousto-optic modulators (AOMs) were
used to shape the Raman pulses. The AOMs and the rf attenuators have been shown to add phase
shifts to the laser light [16]. If the two Raman beams were turned off with separate AOMs and
driving electronics, independent drifts in the phase shifts would appear in the phase of the atomic
superposition state. The offset, φerr, was reduced by adding an additional AOM that turned both
laser beams off simultaneously. With this change, the value of φerr became consistent with zero,
as shown in curve (b).

The determination ωrec from the slope of Eq. 8 is one of our most powerful controls over
potential systematic effects. The analysis eliminates a large number of systematic shifts
introduced by (i) non-ideal RF electronics used to generate the Raman pulses, (ii) the AOMs
used to tailor the pulses, (iii) various phase locked loops affected by the switching of
frequencies, and other electronic interference from rapid changes in the RF or optical intensities,
(iv) pulsing MOT coils that might affect the vibration isolation platform. Our value of the photon
recoil frequency is based on this data analysis method.

2.8 Index of refraction effects

Cs atoms in the vacuum chamber will produce a non-unity index of refraction for the
light. This will change keff = k + k ′ , which will affect the recoil measurement by (i) changing the
momentum imparted to the atoms by the light and (ii) by changing the phase difference keff∆z,
where ∆z is the separation between the two interferometers. Any shift in the recoil measurement
due to room temperature Cs atoms has been shown to be less than 0.06 ppb by varying the
pressure of Cs in the vacuum chamber.

The contribution from the cloud of cold atoms is more complicated. In addition to the
usual dispersive features defined by the 5 MHz wide absorption of the other D1-lines, there are
much sharper dispersive features due to electromagnetically induced transparency effects. [20]
The width of the induced transparency dip is defined by the linewidth of the adiabatic π-pulses
and is ~ 200 kHz. Transitions between the |F = 4 , m F = 0 〉 and the |F = 3 , m F = 0 〉 states are made
with light tuned exactly to the |F ′ = 4 , m F = +1〉 excited state, so that the index of refraction for
this transition remains 1 despite the sharp dispersive feature. However, the adiabatic pulses are
only ~94% efficient, and therefore, other Zeeman ground states become populated. The
population of these other states, specifically the  |F = 4 , mF = + 1, +2〉 and |F = 3 , m F = +1, +2〉
ground states will contribute to a non-zero effect since transitions to the excited states are tuned
50 and 100 kHz from resonance in a bias field of 72 mG.

After we became aware of this potential systematic effect, we determined an
experimental upper limit to the dispersive effect by taking recoil data, switching between high
and low atom densities with each succeeding launch. The number of atoms was reduced by a
factor of 4 from normal operating conditions by collecting atoms in the MOT before launching
for less time. The recoil value taken with the reduced density shifted by +7.3 ± 10.5 ppb,
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consistent with no effect. The dispersive effect is linear with atomic density, so this measurement
places an upper limit to the density dependent effects of (7.3 ± 10.5)(4/3) ppb.

3. Summary of systematic effects

A summary of the systematic effects that were considered is given in Table 1.  Most upper limits
to the uncertainties are experimentally determined. Some systematic effects that were
considered, but not discussed here are also entered in Table 1. In the cases where the
experimental test is consistent with zero and there are good reasons why there should not be a
systematic effect when the parameter is varied, the uncertainty is kept, but no correction is
applied to the value of ωrec. The significant uncertainties (greater than 0.4 ppb) listed in Table 1
are added in quadrature.

The largest uncertainty in Table 1 is the experimentally determined uncertainty on
possible density  dependent effects. We have also analyzed this effect numerically using the
optical Bloch equations that describe the time evolution of all the Zeeman sub-levels of the S1/2

F=3 and F=4 ground states and the P1/2 F′=3 excited states of cesium. The calculation shows that
the effect due to index of refraction changes is less than 1ppb. In this paper, we include the
experimentally determined uncertainty in our preliminary value of α, pending further verification
of our calculations. However, because we expect that there will be no correction larger than 1
ppb to our final result, so we have not included  a 9.7 ppb correction to our value of frec.

4. The value of h/MCs and  αααα

The preliminary value of α is determined from photon recoil measurement derived from data that
measures the slope of the recoil shift versus T. The weighted average of 31 data sets of the type
shown in Fig. 5 is  frec = ffix [1 - (124.98 ± 4.88) × 10-9]. The chi-square is χ2/(N-2) = 1.5. This
value of frec is adjusted by the values listed in right hand column of Table 1. In frequency units,

 frec = 15 006.276 88 (23) (7) (22),                                            (9)

where the quantities in parentheses are the total (15 ppb), the statistical (4.9 ppb), and systematic
(14 ppb) uncertainties. Without the density dependent uncertainty, the systematic error in h/M
reduces to 3.2 ppb. The other measurements needed to determine α based on Eq. 1 are given in
Table. 2. Note that all the uncertainties are reduced by a factor of two when used to calculate α.

With these values, we arrive at a preliminary value for α-1 is

α-1 = 137.036 000 3 (10).                                                 (10)

We are currently undergoing another review of our data analysis and numerical simulations of
the atom interferometer using the optical Bloch equations. If the initial results are verified, we
should be able to reduce uncertainty to α to 3.1 ppb. The h/MCs contribution to this uncertainty is
α to 2.9 ppb.

This work was supported, in part by grants from the National Science Foundation, the Air
Force Office of Scientific Research, the Department of the Navy and the National
Reconnaissance Office. A.W. acknowledges support from the Alexander von Humboldt
Foundation.
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Table 1. Systematic error budget

Systematic effect
Experimental

limit (ppb)
Theoretical
limit (ppb)

Correction to
h/M (ppb)

Optical beams
Gouy phase shift - 0.89 ± 0.04 + 0.89 ± 0.4
Wavefront curvature + 0.035 ± 0.039 < 0.04
Speckle
Relative angle - 1.0 ± 0.4 +1.0 ± 0.4
Beam clipping + 0.04 ± 0.04
Polarization ± (1.5 ± 2.0) ±2.0

Magnetic fields
Linear term -1.0 ± 2.0 0 ± 2.0
Quadratic term +0.15 ± 0.1 - 0.15 ± 0.1

Electric fields
dc Stark effect < 2 × 10-4

ac Stark effect from
tracer laser beam

< 0.004 < 0.008

ac Stark effect from
Raman lasers

0.016 ± 0.10

Frequencies
Lock to cesium < 0.6

Difference frequency < 0.002
Frequency switching < 0.4 0 ± 0.4
Gravity chirp < 0.002
Gravity gradient - 9.7 ± 1.0
Bad frequencies 0
Computer arithmetic 0

Dispersion
cold atoms -9.7 ± 14 In progress 0 ± 14
Hot background atoms < 0.06

Timing
Line noise 0
Synchronized
fluctuations

<0.2

Time resolution 0

Other
Missed recoils < 0.16
Sagnac effect from

launch misalignment
< 0.3

Sagnac effect from
beam misalignment

< 1.0 0 ± 1.0

Collisional shifts < 0.3
π/2 pulses See Fig. 8
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Table 2. Quantities use to determine αααα

Quantity Value Precision Source

R ∞ 10 973 731.568 549 (83) m-1 0.0076 ref. 1
Cesium transitions

F = 3 → 3′
F = 4 → 3′

335 120 562 838 (43) kHz
335 111 370 206 (43) kHz

0.13 ppb
ref. 2

MCs 132.905 451 931 (27) amu 0.20 ppb ref. 3
mp 1.007 276 466 88 (13) amu 0.13 ppb ref. 1
me 5.485 799 110 (12) × 10-4 amu 2.1 ppb ref. 1

CODATA α-1 137.035 999 76 (50) 3.7 ppb ref. 1
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Fig. 1.   Determinations of the fine structure constant α taken from Table XV of ref. 1 is shown
with the CODATA value and our preliminary value. The neutron and muonium values are an
average of several independent measurements.
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Fig 2.  A space-time trajectory of a Ramsey-Bord  interferometer beginning with an atom
initially at rest. Each arrow indicates the direction of the k-vector of the π/2-pulses. The dotted
lines show atomic paths that do not contribute to the interference signal.
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Fig 3. An atom interferometer based on adiabatic transfer between  ground states |g1〉 and |g2〉.
The upper diagram is a space-time diagram of the lower interferometer of Fig. 2. The intensity
profiles of the pulses used to produce π/2 transitions for this interferometer are shown. In order
to create the upper interferometer, the shapes of A1 and A2 are changed as indicated. In this
figure,  k1 (k2) is directed upward (downward.)
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Fig. 4. The spatial areas enclosed by the two Ramsey-Bord  interferometers due to a
misalignment of the Raman beams θR or the launch θL with respect to gravity, g. The areas of the
two interferometers are equal so that Φ1 - Φ1 ~ 0.
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Fig. 5. The interferometer phase difference ΔΦ  = Φ1- Φ1 versus the time T between the π/2
pulses. This data was taken with 30 π pulses sandwiched in between the two sets of π/2 pulses.
Pulse shaping AOMs are controlled by microwave attenuators that introduce attenuation
dependent phase shifts. There are additional phase shifts which are due to thermal effects in the
AOM. Unfortunately, even with the common acousto-optic modulator (AOM) installed, long
term drifts in  φerr were still observed.
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