Single Molecules, Cells, and Super-Resolution Optics

Eric Betzig Janelia Research Campus, HHMI

2014

0.5 µm

1 9

9

5

Cornell and the Beginnings of Near-Field Optical Microscopy

Mike Isaacson and his STEM

Me, Alec Harootunian, and Aaron Lewis, 1983

concept

A. Lewis, et al., Ultramicroscopy **13**, 227 (1984)

The Long History of Breaking Abbe's Law: Near-Field

Illuminating beam

X-position Y-position Phase sensitive detector

near-field microwave (λ = 3 cm) microscopy

objectimageUCCLLImage<t

Resolution of 1/60 of the wavelength!

E.A. Ash, G. Nicholls, Nature 237, 510 (1972)

XXXVIII. A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region. By E. H. SYNGE*.

Edward "Hutchie" Synge, *Phil. Mag.* **6**, 356 (1928)

- J.A. O'Keefe (1956)
- A.V. Baez (acoustics, 1956)
- C.W. McCutchen (1967)
- U. Ch. Fischer (lithography, 1981)
- D.W. Pohl (1984)
- G.A. Massey (1984)
- J. Wessel (1985)

The Long History of Breaking Abbe's Law: Far-Field

Resolution $3\times$ beyond Abbe's Limit!

test pattern, super-resolved

A. Bachl, W. Lukosz, JOSA 57, 163 (1967)

A Priori Information: wafer inspection

Making Near-field Optical Microscopy Work

Edwin Neher and Bert Sakmann, Nobel 1991

patch clamp: single ion channel recording

Me, Alec Harootunian, and Aaron Lewis, 1983

end of aluminum coated pipette

E. Betzig, et al., Biophys. J. 49, 269 (1986)

Making Near-field Optical Microscopy Work

my near-field scanning optical microscope (NSOM)

microscope control room

μm

diffraction limited

NSOM

1µm

NSOM

Initial Struggles at Bell Labs

AT&T Bell Labs, Murray Hill, NJ

Horst Störmer, 1998 Nobel in Physics

Making NSOM Routine

adiabatically tapered optical fiber probe

E. Betzig, J.K. Trautman, et al., Science **251**, 1468 (1991)

1 μm

shear force distance regulation

E. Betzig, *et al.*, *Appl. Phys. Lett.* 60, 2484 (1992)

The Golden Age of NSOM

high density data storage

E. Betzig, et al., Appl. Phys. Lett. 61, 142 (1992)

H.F. Hess, et al., Science 61, 142 (1994)

histological section, monkey hippocampus

E. Betzig, J.K. Trautman, Science 257, 189 (1992)

2 µm

photolithography

A

fluorescence: phase change in phospholipid monolayers

J. Hwang, et al., Science 270, 610 (1995)

nanoscale spectroscopic imaging

Single Molecule Detection (SMD)

fluorescence: actin, mouse fibroblast cell

widefield

NSOM

FCS:

E. Betzig, et al., Bioimaging 1, 129 (1993)

Nobel, 2014

W.E. Moerner

W.E. Moerner, L. Kador, Phys. Rev. Lett. 62, 2535 (1989)

(a) (b) 0.4 (c) Signal (V) (d) **Double Modulation** -0.4

-0.8 200 400 600 Laser Frequency (MHz)

SM fluorescence excitation spectrum, 1.8°K

single molecule absorption spectra, 1.6°K

Michel Orrit

M. Orrit, J. Bernard, Phys. Rev. Lett. 65, 2716 (1990)

SM fluorescence bursts at room temp

Time gated: E.B. Shera, et al., Chem. Phys. Lett 174, 553 (1990)

R. Rigler, J. Widengren, Bioscience 3, 180 (1990)

NSOM and the Birth of Single Molecule Microscopy

single molecule fluorescence anisotropy

dil-C₁₈-(3) molecules on PMMA

E. Betzig, R.J. Chichester, *Science* **262**, 1422 (1993)

Rob Chichester

500 nm

single molecule NSOM signal $\left| \mathbf{E}(\mathbf{x}) \cdot \mathbf{p} \right|^2$

NSOM and the Birth of Single Molecule Microscopy

single molecule fluorescence anisotropy

dil-C₁₈-(3) molecules on PMMA

E. Betzig, R.J. Chichester, *Science* **262**, 1422 (1993)

Rob Chichester

E fields at aperture: theory vs. experiment

Hans Bethe, 1967 Nobel in Physics

H.A. Bethe, Phys. Rev. 66, 163 (1944)

NSOM and the Birth of Single Molecule Microscopy

single molecule fluorescence anisotropy

 $dil-C_{18}-(3)$ molecules on **PMMA**

E. Betzig, R.J. Chichester,

Science 262, 1422 (1993)

- first imaging of single molecules at room temp
- first super-resolution imaging of single molecules
- first measurement of single molecule dipole orientations
- first localization of single molecules to fraction of PSF width (12 nm xy, 6 nm z)

single molecule dipole orientations

500 nm

Cryogenic Near-field Spectroscopy

Harald Hess Harald's low temp STM

scanning tunnel spectroscopy of Abrikosov flux lattice in NbSe₂

H.F. Hess, et al., Phys. Rev. Lett. 62, 1691 (1989)

Alexei Abrikosov, 2003 Nobel in Physics

Cryogenic Near-field Spectroscopy

Alferov & Kroemer, 2000 Nobel in Physics

semiconductor laser diode

NSOM fiber probe

GaAs / AlGaAs multiple quantum well

Harald Hess Harald's low temp STM

Cryogenic Near-field Spectroscopy

exciton energy variations due to interface roughness

exciton recombination sites scrolling from λ = 700 to λ = 730 nm

isolation of discrete sites in x, y, λ space

H.F. Hess, E. Betzig, *et al.*, *Science* **264**, 1740 (1994)

 $1\,\mu m$

My First Mid-Life Crisis

NSOM engineering limitations:

- poor yield during manufacture
- fragile probes
- topographical artifacts
- weak signals
- probe tips get hot
- large probe tip (0.25 μ m)

Cells aren't flat!

3D lattice light sheet microscopy, D. Mullins, T. Ferrin, E. Betzig, *et al.*

NSOM fundamental limitations:

- probe perturbs fields at sample
- complex contrast mechanisms
- nonlinear image formation artifacts

• the near-field is VERY, VERY short

E. Betzig, J.K. Trautman, Science 257, 189 (1992)

My First Mid-Life Crisis

me and Harald, 1989

me and Harald, 1994

NSOM fundamental limitations:

- probe perturbs fields at sample
- complex contrast mechanisms
- nonlinear image formation artifacts

• the near-field is very, very short

E. Betzig, J.K. Trautman, Science 257, 189 (1992)

Multidimensional Localization Microscopy

A.M. van Oijen, et al., JOSA A16, 909 (1999)

Lifetime: M. Heilemann, et al., Anal. Chem. 74, 3511 (2002)

Blinking: K.A. Lidke, et al., Opt. Express 13, 7052 (2005)

Spatial Resolution and the Nyquist Criterion

Nyquist criterion:

Sampling interval must be at least twice as fine as the desired resolution

$4 \times$ greater molecular density

 $2\,\mu m$

Image Dimensionality	Molecules Required per Diffraction Limited Region for 20 nm Resolution
1D	25
2D	500
3D	2.9 x 10 ⁴

Diffraction Limited Region: 0.25 μ m dia, 0.6 μ m long

2 samples / period

And Now for Something Completely Different

Flexible Adaptive Servohydraulic Technology (FAST)

- moves 4000 kg load at 8g acceleration
- \bullet positioning precision to 5 μm

Robert Betzig

My Second Mid-Life Crisis

Searching for a New Direction

me in Joshua Tree National Park

me in Oahu, Hawaii

Harald in Sedona, Arizona

Harald in Yosemite National Park

Fluorescent Proteins Revolutionize Biological Imaging

Shimomura, Chalfie, & Tsien

1994: green fluorescent protein

microtubule ends

golgi (green), mitochondria (red)

Switching Behavior in Green Fluorescent Protein

in vivo UV photoactivation (PA) of wtGFP

H. Yokoe, T. Meyer, Nat. Biotech. 14, 909 (1996)

W.E. Moerner, 2014 Nobel in Chemistry

photoactivation energy diagram

R.M. Dickson, et al., Nature **388**, 355 (1997)

Directed Mutagenesis of Photoactivated Fluorescent Proteins (PA-FPs)

increased on/off contrast of PA-GFP

Jennifer Lippincott-Schwartz

George Patterson

pulse chase: nuclear vs cytosolic diffusion

G.H. Patterson, J. Lippincott-Schwartz, Science 297, 1873 (2002)

A Fateful Trip

Greg Boebinger

National High Magnetic Field Lab

Mike Davidson

Neckties®

website tutorials

Zeiss

A Whole World of Microscopy Knowledge Exclusively from Carl Zeiss and MCLECULAR EXPRESSIONS

Olympus

Nikon

Fiable stars Bote Fishid Blance Cell Science CHROMA Gert-Jan Kremers, Sarah G. Gilbert, Paula J. Cranfill, Michael W. Davidson and David W. Piston

Finding the Missing Link

E. Betzig, et al., Science 313, 1642 (2006)

time

La Jolla Labs

Assembling the Rest of the Team

Jennifer Lippincott-Schwartz

George Patterson

Rob Tycko, NIDDK

the microscope in the darkroom in Jennifer's lab

Photoactivated Localization Microscopy (PALM)

lysosomes, COS-7 cell, Kaede-tagged CD63

E. Betzig, et al., Science **313**, 1642 (2006)

Photoactivated Localization Microscopy (PALM)

lysosomes, COS-7 cell, Kaede-tagged CD63

E. Betzig, et al., Science 313, 1642 (2006)

A High On/Off Contrast Ratio is Essential for High Resolution

E. Betzig, *et al.*, *Science* 313, 1642 (2006)

From Rags to Riches, Thanks to HHMI

Janelia Research Campus

The Boss: Gerry Rubin

Endless Coffee

Hari Shroff

my PALM

Gleb Shtengel

Regulation of Gene Expression During Myogenesis LaminA LaminA LaminA -J. Yao, et al., Genes Dev. **25**, 569 (2011)

N. Frost, et al., Neuron 67, 86 (2010)

Polymerization

iPALM: Ultrasensitive PALM in 3D

Harald

Hess

iPALM

gulatory layer ering lave in signaling lave Cell adhesion laye Extracellular matri

three phase single molecule interferometry

ESCRT machinery at HIV budding sites

S.B. Van Engelenburg, et al., Science 343, 653 (2014)

vertical architecture of adhesions

P. Kanchanawong, et al., Nature 468, 580 (2010)

384 ± 5.4

33.7 ± 3.2 32.8±4.0

Correlative Electron Microscopy and PALM

first correlative EM with super-resolution: mitochondria

E. Betzig, *et al.*, *Science* 313, 1642 (2006)

3D correlative EM/PALM mitochondria (B&W – FIB SEM) mitochondrial DNA (red - iPALM)

scrolling plane-by-plane thru 3D

B.G. Kopek, et al., PNAS, 109, 6136 (2012)

cell membrane (B&W - TEM) & clathrin (color - iPALM)

K. Sochaki, et. al, Nat. Methods, 11 305 (2014)

Caveats with Super-Resolution Microscopy: Fixed Cells

extremely high labeling densities required

exogenous dyes: limited affinity & high background

fixation artifacts, endoplasmic reticulum

Particle Averaging Improves Resolution of Stereotypic Structures

nuclear pore complex proteins

A. Szymborska, et al. Science 341, 655 (2013)

Caveats with Super-Resolution Microscopy: Live Cells

Nyquist criterion:

N-fold resolution increase in *D* dimensions $\rightarrow N^{D}$ -fold more photons collected

T	L. Schermelleh	, R. Heintzmann <i>, J. Cell I</i>	Biol. (2010)	reported resolution (nm)	photon increase required	(W/cm ²)	acquisition time (sec)
ESOLF	Excitation PSF +		8	<i>xy</i> : 20 nm	100		> 60
STED / RI	Scanning PMT/APD	STED pulse PSF = Effective PSF (PSF shaping)		<i>xyz</i> : 30 nm	1,070	10 ⁴ - 10 ⁹	~1,000
Localization				<i>xy</i> : 20 nm	100	10 ³ - 10 ⁴	>20
	Wide-field CCD	Time series (few 1,000 expo-sures) Gauss fitting of individual spots — Projection (Pointillism) Wide-field CCD Image: Comparison of the series of		<i>xy</i> : 10 nm, <i>z</i> : 20 nm	14,400		1,500
		5 phase shifts Interference of exciting light with sample structure (Moiré effect)	•••	<i>xy</i> : 100 nm	4		0.1 - 1
SIM	Wide-field CCD	5 phase shifts 5 phase shifts	c dion	<i>xy</i> : 100 nm, <i>z</i> : 370 nm	8	10 - 10²	~10

Live Cell Structured Microscopy

endoplasmic reticulum

2D SIM, 98 nm resolution 0.1 sec acquisition, 1800 frames

Lin Shao

3 µm

clathrin coated pits and cortical actin

TIRF-SIM, 82 nm resolution 0.5 sec acquisition, 90 frames

Time = 0 sec

Mats Gustafsson, 1960-2011

early endosomes and cortical actin

Nonlinear SIM, 62 nm resolution 1.5 sec acquisition, 34 frames

 Time = 0

 Frame = 0

The Challenges and Importance of Studying Live Cell Dynamics

Lattice Light Sheet Microscopy: Non-Invasive 4D Live Cell Imaging

T cell and its target cell

concept

chromosomes, mitos, and ER during mitosis

Time = 0.0 min

C. elegans early embryo

Kai Wang

B-C Chen, et al., Science 346,1257998 (2014)

Ultra-High Density 3D Localization Microscopy

Points Accumulation for Imaging in Nanoscale Topography (PAINT)

A. Sharonov, R.M. Hochstrasser, PNAS 103, 18911 (2006)

intracellular membranes, COS-7 cell

Wesley Legant

3D PAINT with lattice: dividing cell

over 300 million localized molecules

Adaptive Optics (AO): Moving Cell Biology Away from the Cover Slip

non-scattering media: zebrafish embryonic brain

AO & Deconvolution

Kai Wang

da A

scattering media: mouse visual cortex

Na Ji

AO ON

dendritic spines, 600 μm deep AO off AO on 5 μm

functional imaging of neural activity, 400 μm deep

AO OFF

The Beauty and Complexity of Living Systems

