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Superfluids and superconductors: quantum mechanics on a macroscopic scale 
Superfluidity or superconductivity – which is the preferred term if the fluid is made 
up of charged particles like electrons – is a fascinating phenomenon that allows us 
to observe a variety of quantum mechanical effects on the macroscopic scale. 
Besides being of tremendous interest in themselves and vehicles for developing key 
concepts and methods in theoretical physics, superfluids have found important 
applications in modern society. For instance, superconducting magnets are able to 
create strong enough magnetic fields for the magnetic resonance imaging technique 
(MRI) to be used for diagnostic purposes in medicine, for illuminating the structure 
of complicated molecules by nuclear magnetic resonance (NMR), and for confining 
plasmas in the context of fusion-reactor research. Superconducting magnets are 
also used for bending the paths of charged particles moving at speeds close to the 
speed of light into closed orbits in particle accelerators like the Large Hadron 
Collider (LHC) under construction at CERN. 

Discovery of three model superfluids 

Two experimental discoveries of superfluids were made early on. The first was 
made in 1911 by Heike Kamerlingh Onnes (Nobel Prize in 1913), who discovered 
that the electrical resistance of mercury completely disappeared at liquid helium 
temperatures. He coined the name “superconductivity” for this phenomenon. The 
second discovery – that of superfluid 4He – was made in 1938 by Pyotr Kapitsa and 
independently by J.F. Allen and A.D. Misener (Kapitsa received the 1978 Nobel 
Prize for his inventions and discoveries in low temperature physics). It is believed 
that the superfluid transition in 4He is a manifestation of Bose-Einstein 
condensation, i.e. the tendency of particles – like 4He – that obey Bose-Einstein 
statistics to condense into the lowest-energy single–particle state at low 
temperatures (the strong interaction between the helium atoms blurs the picture 
somewhat). Electrons, however, obey Fermi-Dirac statistics and are prevented by 
the Pauli principle from having more than one particle in each state. This is why it 
took almost fifty years to discover the mechanism responsible for 
superconductivity. The key was provided by John Bardeen, Leon Cooper and 
Robert Schrieffer, whose 1957 “BCS theory” showed that pairs of electrons with 
opposite momentum and spin projection form “Cooper pairs”. For this work they 
received the 1972 Nobel Prize in Physics. In their theory the Cooper pairs are 
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structureless objects, i.e. the two partners form a spin-singlet in a relative s-wave 
orbital state, and can to a good approximation be thought of as composite bosons 
that undergo Bose-Einstein condensation into a condensate characterised by 
macroscopic quantum coherence.  

Since both the Cooper pairs of the original BCS theory and the helium atoms are 
spherically symmetric objects, they form isotropic superfluids on condensation. 
The situation is more complex – and therefore more interesting – in a third model 
superfluid discovered by David Lee, Douglas Osheroff and  Robert Richardson in 
1972. Their discovery of superfluidity in 3He was rewarded by a Nobel Prize in 
1996. While 4He is a boson, 3He with three rather than four nucleons is a fermion, 
and superfluid 3He is formed by condensation of Cooper pairs of 3He atoms (or 
more precisely of “quasiparticles” of atoms each with a surrounding cloud of other 
atoms) that have internal degrees of freedom. This is because the two partners form 
a spin-triplet in a relative orbital p-state. Both the net spin of the pair and their 
relative orbital momentum are therefore different from zero and the superfluid is 
intrinsically anistropic; roughly speaking, each pair carries two vectors that can 
point in various directions as will be discussed below. 

Broken symmetry and the order parameter 

Even before the discovery of superfluid 3He, theoreticians had been interested in 
anistropic superfluids. In order to appreciate their significance it is useful to recall 
the importance of the concepts of order parameter and spontaneously broken 
symmetry in the theory of superfluidity. The concept of an order parameter was 
introduced by Lev Landau in connection with his 1937 theory of second order 
phase transitions. The order parameter is a quantity that is zero in the disordered 
phase above a critical temperature T , but has a finite value in the ordered state 
below . In the theory of ferromagnetism, e.g., spontaneous magnetisation, which 
is zero in the magnetically disordered paramagnetic state and nonzero in the spin-
ordered ferromagnetic state, is chosen to be the order parameter of the 
ferromagnetic state. Clearly, the existence of a preferred direction of the spins 
implies that the symmetry of the ferromagnet under spin rotation is reduced 
(“broken”) when compared to the paramagnet. This is the phenomenon called 
spontaneously (i.e. not caused by any external field) broken symmetry. It describes 
the property of a macroscopic system in a state that does not have the full 
symmetry of the underlying microscopic dynamics. 

c

cT

In the theory of superfluidity the order parameter measures the existence of Bose 
condensed particles (Cooper pairs) and is given by the probability amplitude of 
such particles. The interparticle forces between electrons, between 4He and between 
3He atoms, are rotationally invariant in spin and orbital space and, of course, 
conserve particle number. The latter symmetry gives rise to a somewhat abstract 
symmetry called “gauge symmetry”, which is broken in any superfluid. In the 
theory of isotropic superfluids like a BCS superconductor or superfluid 4He, the 

- 2 - 



order parameter is a complex number Ψ  with two components, an amplitude Ψ  
and a phase (“gauge”) φ . Above T  the system is invariant under an arbitrary 
change of the phase 

c

φφ ′→ , i.e. under a gauge transformation. Below T  a 
particular value of  

c

φ  is spontaneously preferred.  

Multiple simultaneously broken continuous symmetries 

In anistropic superfluids, additional symmetries can be spontaneously broken, 
corresponding to an order parameter with more components. In 3He – the best 
studied example with a parameter having no fewer than 18 components – the pairs 
are in a spin-triplet state, meaning that rotational symmetry in spin space is broken, 
just as in a magnet. At the same time, the anisotropy of the Cooper-pair wave 
function in orbital space calls for a spontaneous breakdown of orbital rotation 
symmetry, as in liquid crystals. Including the gauge symmetry, three symmetries 
are therefore broken in superfluid 3He. The 1972 theoretical discovery that several 
simultaneously broken symmetries can appear in condensed matter was made by 
Anthony Leggett, and represented a breakthrough in the theory of anisotropic 
superfluids. This leads to superfluid phases whose properties cannot be understood 
by simply adding the properties of systems in which each symmetry is broken 
individually. Such phases may have long range order in combined, rather than 
individual degrees of freedom, as illustrated in Fig. 1. An example is the so-called 
A phase of superfluid 3He. Leggett showed, for example, that what he called 
spontaneously broken spin-orbit symmetry leads to unusual properties that enabled 
him to identify this phase with a particular microscopic state, the ABM state (see 
below). 

The microscopic 1957 BCS theory of superconductivity represents a major 
breakthrough in the understanding of isotropic charged superfluids 
(superconductors). The original theory does not, however, address the properties of 
anisotropic superfluids (like superfluid 3He, high temperature superconductors and 
heavy fermion superfluids), which were treated much later with decisive 
contributions from Leggett and others. Neither is the BCS theory able to describe 
inhomogeneous superfluids with an order parameter that varies in space as may 
happen, for example, in the presence of a magnetic field. A particularly important 
example of such a phenomenon is the type of superconductor used in the powerful 
superconducting magnets mentioned earlier. Here superconductivity and 
magnetism coexist. The theoretical description of this very important class of 
superconductors relies on a phenomenological theory developed in the 1950s by 
Alexei Abrikosov, building on previous work by Vitaly Ginzburg and Lev 
Landau (Landau, who received the Nobel Prize in  physics in 1962, died in 1968). 
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Figure 1. The possible states in a two-dimensional model liquid of particles with two 
internal degrees of freedom: spin (full-line arrow) and orbital angular momentum (broken-
line arrow). (a) Disordered state: isotropic with respect to the orientation of both degrees of 
freedom. The system is invariant under separate rotations in spin and orbital space and has 
no long range order (paramagnetic liquid). (b)–(e) States with different types of long range 
order corresponding to all possible broken symmetries. (b) Broken rotational symmetry in 
spin space (ferromagnetic liquid). (c) Broken rotational symmetry in orbital space (“liquid 
crystal”). (d) Rotational symmetries in both spin and orbital space separately broken (as in 
the A phase of superfluid 3He). (e) Only the symmetry related to the relative orientation of 
the spin and orbital degrees of freedom is broken (as in the B phase of superfluid 3He). 
Leggett introduced the term spontaneosuly broken spin-orbit symmetry for the broken 
symmetry leading to the ordered states in (d) and (e). 

 

Superconductivity and magnetism 

Superconductivity is characterised by electron pairs (or holes) that have condensed 
into a ground state, where they all move coherently. This means not only that the 
resistance disappears but also that a magnetic field is expelled from the 
superconductor (the charged superfluid). This is known as the Meissner effect. 
Many superconductors show a complete Meissner effect, which means that a 
transition from the superconducting to the normal state occurs discontinuously at a 
certain critical external magnetic field Hc. Other superconductors, in particular 
alloys, only show a partial Meissner effect or none at all. Work done in Kharkov by 
A. Shubnikov and by others elsewhere showed that the magnetisation may change 
continuously as the external field is increased, starting at a lower critical field, Hc1, 
while the superconductor continues to show no resistance up to a much higher 
upper critical field, Hc2. This effect is illustrated in Fig. 2. Between the lower and 
the upper critical fields the superconducting state coexists with a magnetic field. 
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Figure 2. (Colour) Magnetisation M (blue) and induced field B (red) as a function of 
external magnetic field H for superconductors with complete (dashed lines) and partial (full 
lines) Meissner effect (see text). 

 

The theoretical framework for understanding the behavior of superconductors in the 
presence of such strong magnetic fields was developed in the 1950s by a group of 
Soviet physicists. In a groundbreaking paper, published in 1957, Abrikosov 
discovered the vortices in the order parameter of a superconductor and described 
their crucial role for the coexistence of a magnetic field and superconductivity in 
superconductors “of the second group”, or in “type-II superconductors” as we 
would say today. In the same paper, Abrikosov provided an amazingly detailed 
prediction – later to be borne out by experiments – of the way in which a stronger 
magnetic field suppresses superconductivity: vortices, which form a lattice, come 
closer to each other, and at some field the vortex cores overlap, suppressing the 
order parameter everywhere in the superconducting material – hence driving it into 
the normal state. 

Abrikosov’s results came from an insightful analysis of the Ginzburg-Landau 
equations, a phenomenological description of superconductivity published in 1950 
by Vitaly Ginzburg and Lev Landau. One of the motivations behind their work was 
the need to develop a theory that would make it possible to describe correctly the 
destruction of superconductivity by a magnetic field or an electric current. The 
Ginzburg-Landau equations have proved to be of great importance in physics, not 
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only for describing superconductivity in the presence of a magnetic field. In their 
1950 paper Ginzburg and Landau were the first to realize that superconductors can 
be divided into two classes with regard to their behaviour in a magnetic field. They 
introduced a quantity κ , now known as the Ginzburg-Landau parameter, which 
enabled them to make a distinction between the two classes. Superconductors with 

2/1<κ  do not allow the coexistence of a magnetic field and superconductivity 
in the same volume. Superconducting materials with 2/1>κ  do allow for such a 
coexistence. In modern language ξλκ /=  is the ratio of the magnetic field 
penetration length λ and the coherence length ξ.  

The superconductors known at the time had 1<<κ , e.g., 16.0≈κ  for mercury. 
That is why Ginzburg and Landau did not seriously pursue this parameter region 
beyond showing that if a material with 2/1>κ  is placed in a magnetic field 
somewhat larger than the thermodynamic critical value, the normal phase is 
unstable with respect to formation of a superconducting state. However, they 
introduced the crucial notions of a superconducting order parameter, of negative 
surface energy of the boundary separating the superconducting from the normal 
phase in type-II superconductors, and (in modern terminology) of the upper critical 
magnetic field, where superconductivity vanishes in type-II materials. Even so, it 
was left to Abrikosov to describe in 1957 the result of this instability and to 
formulate the complete phenomenological theory of type-II superconductors. At the 
same time it is clear that the Ginzburg-Landau equation and the partial 
understanding achieved by Ginzburg and Landau was a necessary basis for his 
work. 

Below we describe the main contributions of Abrikosov, Ginzburg and Leggett, the 
2003 Nobel Physics Laureates, in some more detail. We will do this in the 
chronological order the contributions were made. (Readers who want to skip the 
next three, somewhat technical sections, can go directly to the last section on the 
importance of the contributions.) 

 

Ginzburg-Landau theory 

When Ginzburg and Landau formulated their phenomenological theory of 
superconductivity in 1950, almost 50 years had passed since Kamerlingh Onnes 
discovered the superfluid electron liquid in mercury. This was well before the BCS 
theory but a certain level of understanding had been reached using 
phenomenological methods. Early on, Gorter and Casimir introduced the two-fluid 
model (a similar model was developed for superfluid helium). They divided the 
conduction electrons into two groups, a superconducting condensate and normal 
electrons excited from the condensate. Later, in 1935, the brothers Fritz and Heinz 
London presented a phenomenological theory that could explain why a magnetic 
field does not penetrate further into a metal than the London penetration depth, λ, a 
concept we have already alluded to. However, the London theory could not 
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describe correctly the destruction of superconductivity by a magnetic field or 
current. Nor did it allow a determination of the surface tension between the 
superconducting and normal phases in the same material (Landau had in 1937 
assumed the surface tension to be positive in his theory of the so called 
intermediate state). Neither could the London theory explain why the critical 
magnetic fields needed to destroy superconductivty in thin films are different from 
the critical fields for bulk superconductors of the same material. These deficiencies 
provided the motivation for Ginzburg and Landau. Their phenomenological 
Ginzburg-Landau theory of superconductivity was indeed able to solve these 
problems.  

The Ginzburg-Landau (GL) theory is based on Landau’s theory of second order 
phase transitions from 1937. This was a natural starting point, since in the absence 
of a magnetic field the transition into the superconducting state at a critical 
temperature Tc is a second-order phase transition. Landau’s theory describes the 
transition from a disordered to an ordered state in terms of an “order parameter”, 
which is zero in the disordered phase and nonzero in the ordered phase. In the 
theory of ferromagnetism, for example, the order parameter is the spontaneous 
magnetisation. In order to describe the transition to a superconducting state, GL 
took the order parameter to be a certain complex function ( )rΨ , which they 
interpreted as the “effective” wave function of the “superconducting electrons”, 
whose density ns is given by |Ψ|2; today we would say that ( )rΨ  is the macroscopic 
wave function of the superconducting condensate.   

In accordance with Landau’s general theory of second-order phase transitions, the 
free energy of the superconductor depends only on 2Ψ and may be expanded in a 

power series close to Tc. Assuming first that Ψ(r) does not vary in space, the free 
energy density becomes 

...)2/( 42 +Ψ+Ψ+= βαns ff  

where the subscripts n and s refer to the contributions from the normal and the 
superconducting state respectively. A stable superconducting state is obtained if β 
is a positive constant and α=α0 (T-Tc ).  

Since the purpose of Ginzburg and Landau was to describe the superconductor in 
the presence of a magnetic field, H , when the order parameter may vary in space, 
gradient terms had to be added to the expansion. The lowest order gradient term 
looks like a kinetic energy term in quantum mechanics, which is why GL wrote it – 
adding a term for the magnetic field energy – as  
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Here the magnetic field ( ) 0/ µAH ×∇=  is described by its vector potential, A(r), 
which enters the kinetic energy term as required by gauge-invariance. The total free 
energy Fs is obtained by integrating the free energy density fs over volume. 
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By minimising the free energy Fs with respect to Ψ and A, the GL equations are 
obtained. They are 
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plus a boundary condition.  

The second equation has the same form as the usual expression for the current 
density in quantum mechanics, while the first – except for a term nonlinear in Ψ, 
which acts like a repulsive potential – resembles the Schrödinger equation for a 
particle of mass m*, charge e* with energy eigenvalue -α . In their paper Ginzburg 
and Landau wrote that “e* is the charge, which there is no reason to consider as 
different from the electronic charge”. As soon as they learned about the BCS theory 
and Cooper pairs, however, they realized that e*=2e and m*=2m.  

The GL equations are capable of describing many phenomena. An analysis shows, 
for example, that a magnetic field penetrating into a superconductor decays with its 
distance from the border to a normal phase region over a characteristic length 

( )Tλ , where λ2(T)=β m*/|α|e*2. This is the London penetration length. 
Furthermore, it is found that a disturbance δΨ  from an equilibrium value of the 
order parameter, decays over a characteristic length ξ , where ( ) αξ *22 4/ mT h= . 
Therefore, the penetration length λ  and the coherence length ξ  are two 
characteristic lengths in the GL theory. (Although the physics was clear to them, 
Ginzburg and Landau used neither this notation nor this terminology; the concept 
of a coherence length was only introduced three years later by B. Pippard). The two 
lengths have the same temperature dependence close to Tc, where TTc −∝ /1,ξλ . 

In 1950 Ginzburg and Landau made a number of predictions for the critical 
magnetic field and critical current density for thin superconducting films and the 
surface energy between superconducting and normal phases of the same material. 
These predictions could soon be tested experimentally with positive results. 

At this point a short digression about the surface energy between superconducting 
and normal phases of the same material is called for. It follows from the GL 
equations that this quantity depends on the two characteristic lengths λ and ξ in a 
way that can be understood from Fig. 3. The penetration of the magnetic field, a 
distance of the order λ, into the superconductor corresponds to a gain in energy, 
which is proportional to λ and due to the decreased distortion of the field. On the 
other hand, the fact that the superconducting state vanishes over a distance of the 
order ξ close to the border decreases the gain in condensation energy, and hence 
gives an energy increase proportional to ξ. The net surface energy is the sum of the 
two contributions and can be expressed as 2/)2/( 2

0 cHµλξ − . In terms of the 
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Ginzburg-Landau parameter ξλκ /= we see that the surface energy is positive if 
2/1<κ and negative if 2/1>κ . Ginzburg and Landau were mainly interested 

in clean metals for which κ is much smaller than unity. Nevertheless, they did note 
this fact and pointed out that there is a “peculiar” instability of the normal phase of 
the metal if 2/1>κ , which is associated with this negative surface energy.  

cH

2/1>κ

 

2Ψ

Hext=Hc 

λ 

ξ H

Distance from n-s boundary 

Figure 3. Sketch of the border region between a normal and a superconducting phase, 
illustrating the concepts of penetration length λ  and coherence length ξ . If the magnetic 

field is in the normal phase, it decays to zero in the superconducting phase over a 

length λ . At the same time the superconducting order increases from zero at the interface 
to its full value inside the superconducting phase over a distance ξ . 

 

Theory of type-II superconductors 

One of the physicists who soon began to test the predictions of the GL theory was 
the young N.V. Zavaritzkii. Working at the Kapitsa Institute for Physical Problems 
in Moscow, he was able to verify the theoretical predictions about the dependence 
on film thickness and temperature of the critical magnetic field of superconducting 
films. However, when he tried to make better samples by a new technique (vapour 
deposition on glass substrates at low temperatures) he discovered that the critical 
fields no longer agreed with the GL theory. He brought this to the attention of his 
room mate at the university, Alexei Abrikosov. Abrikosov looked for a solution to 
this mystery within the GL theory and started to think about the true nature of the 
superconducting state for . In contrast to the superconductors that were 
the focus of Ginzburg’s and Landau’s interest in 1950, the new materials had 
values in this parameter regime. In 1952 Abrikosov was able to calculate the 
critical magnetic fields for this parameter regime and found agreement with 
Zavaritzkii’s measurements.  
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Abrikosov continued to think about strongly “type-II superconductors” with large 
values of κ . It was clear that superconductivity could not exist in magnetic fields 
of a certain strength. But Abrikosov was able to show that when the field is 
diminished again, small superconducting regions start to nucleate at a magnetic 
field 22 κcc HH = , which for 2>κ

2c

is larger than the thermodynamic critical 
field . The latter is the critical field that is relevant for normal, or “type-I” 
superconductors. We now call  the upper critical magnetic field. However, the 
material is not completely superconducting in the sense that the magetic field 
vanishes everywhere in the material. Abrikosov found that a periodic distribution of 
the magnetic field, as a lattice, minimised the total energy. An experimentally 
observed Abrikosov lattice of this type is shown in Fig. 4. 

cH
H

 

 

Figure 4. Abrikosov lattice of magnetic
flux lines (vortices) in NbSe2 – a type-II
superconductor  - visualised by magneto-
optical imaging. The first pictures of
such a vortex lattice were taken in 1967
by U. Essmann and H. Träuble, who
sprinkled their sample surfaces with a
ferromagnetic powder that arranges itself
in a pattern reflecting the magnetic flux
line structure. 

 

The approach that worked for magnetic fields just below the upper critical field, 
where the order parameter is small and the nonlinear term in the first GL equation 
can be neglected, does not work for much weaker fields. However, by studying the 
nature of the solutions for fields just below , Abrikosov realised that they 
correspond to vortices in the order parameter and that this type of solution must be 
valid for weaker fields as well.  

2cH

The point is that because we require the theory to be gauge invariant, the vector 
potential  and the phase A ϕ  of the order parameter )exp( ϕiΨ=Ψ appear in the 

combination ( ) ∇− eA 2/h

x Ay =

ϕ

H z

 in the first GL equation. Now, for the magnetic field 
to be constant inside the superconductor  has to grow. If, for example, we choose 
a gauge where the y component of A grows linearly in the x direction, so that 

 with , the magnetic field points in the z direction. If the 

free energy is not to grow without limit, the growth in the vector potential has to be 
compensated by jumps in the phase. It turns out that this corresponds to vortex 
solutions in which the order parameter vanishes at the points of a regular (triangular 
or hexagonal) lattice and the phase of the order parameter changes by 

A

AH z ∂= y ∂/ x

π2  on a 
closed contour around these lattice points. 
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Abrikosov discovered these solutions in 1953, but they were unexpected and he did 
not publish them until 1957. The suggestion by R.P. Feynman in 1955 that vortex 
filaments are formed in superfluid 4He had then reached the Soviet Union. The 
level of scientific contact between East and West was very low during the Cold 
War and the work of Soviet scientists did not, in general, get much attention from 
researchers in the West. The work of Ginzburg-Landau was received with 
scepticism until L.P. Gorkov showed in 1959 that the GL equations could be 
derived from the microscopic BCS theory in the appropriate limit. Later, P.C. 
Hohenburg showed that the GL equations are valid not only close to the transition 
point in temperature or magnetic field but also at temperatures and in magnetic 
fields where the superconducting order is not small. The work of Abrikosov was 
not fully appreciated in the West until the 1960s, when superconductors with very 
high critical fields had been discovered. 

 

Superfluid 3He – a model anisotropic superfluid 

We have already remarked that 3He with its two electrons and three nucleons is a 
fermion. A large class of interacting fermion systems, like the normal electron 
liquid in many metals, can be described by Landau’s fermi liquid theory developed 
during the 1950’s. At the time of the BCS theory experimentalists had started to 
investigate the properties of liquid 3He to see if it could be described by the Landau 
theory. J.C. Wheatly played a decisive role here by showing that liquid 3He could 
indeed be very well described by Landau’s fermi liquid theory below 100 mK. This 
is a much higher temperature than 2.7 mK, which later proved to be the critical 
temperature for a transition to the superfluid state. For a quantitative understanding 
of the liquid this result was important, since the atoms in liquid 3He interacts 
strongly with each other. 

Landau’s theory is phenomenological and describes a system of interacting fermi 
particles in terms of “quasiparticles”, a term he introduced. A quasiparticle can be 
viewed as a “bare” particle interacting with a cloud of surrounding particles. The 
theory has one parameter, the effective mass , which describes the single-
quasiparticle excitation spectrum, and a number of parameters that describe the 
effects of external fields. Often it is sufficient to have a few of these parameters, 
which can be determined from experiments. Landau’s theory applies at “low 
enough” temperatures – a criterion that for liquid 3He is very well satisfied at the 
transition temperature to superfluidity. In the mid 1960s Leggett was able to extend 
the Landau theory to the superfluid phases and calculate the (large) renormalisation 
of the nuclear spin susceptibility by interaction effects. His prediction agreed very 
well with later NMR measurements (see below). 

*m

Liquid 3He was, as we have seen, of considerable experimental interest from the 
mid 1950s on. Only a few years after the publication of the BCS theory several 
authors – among them Pitaevskii; Brueckner, Soda, Anderson and Morel; and 
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Emery and Sessler – suggested that a BCS-like pair condensation into a superfluid 
state might occur in liquid 3He. It was immediately clear that the strong repulsive 
interaction between the atoms would favour a relative orbital momentum state 
corresponding to p- or d-wave pairing in which the pair particles would be kept at 
some distance from each other. The superfluid would then be anisotropic, as we 
have discussed earlier in this text. 

We now know that the condensed pairs of 3He atoms are in a relative p-state (L=1), 
which means that the total wave function is antisymmetric with respect to an 
exchange of the spatial coordinates of two particles. Since the total wave function 
has to be antisymmetric (the Pauli principle) it follows that the wave function must 
be even with respect to an exchange of the spin coordinates of the two particles. 
The total spin of the pair must therefore be in a spin triplet state (S=1) with three 
possible values of the spin projection (Sz = +1, 0, -1) corresponding to the spin 
states (↑↑), (↑↓+↓↑)/√2 and (↓↓). Some properties of anistropic superfluids that can 
form under these circumstances were calculated theoretically. In 1961 P.W. 
Anderson and P. Morel proposed a superfluid condensate of pairs forming spin 
triplets with circular polarization (Sz=±1), where only the states (↑↑) and (↓↓) are 
involved (the ABM state). Two years later, however, R. Balian and N.R. 
Wertheimer and independently Y.A. Vdovin showed that lower energy is achieved 
with a pair state that also involves the spin state (↑↓+↓↑)/√2 (the BW state). 

The experimental discovery of the superfluid A, B and A1 phases in 3He was made 
in 1972 by David Lee, Douglas Osheroff and Robert Richardson. Investigations, 
together with W.J. Gully, of the collective magnetic (i.e. spin-dependent) properties 
of the superfluid phases by nuclear magnetic resonance (NMR) were particularly 
useful in identifying the order parameter structure of these phases. In ordinary 
NMR experiments the system under study is subjected to a strong magnetic field 

in the z direction, which forces the spin S to precess around . By applying a 
weak magnetic field  of high frequency 

0H 0H

rfH ω  perpendicular to , it is possible to 
induce transitions in Sz, the component along , of magnitude 

0H
h0H ± . This effect is 

observed as energy absorption from the magnetic field. If the spins do not interact, 
these transitions occur exactly when  ω  equals the Larmor frequency 0HL γω = , 
where γ is the gyromagnetic ratio of the nucleus. In fact, as long as the interactions 
in the system conserve spin it had been shown that the resonance remains at the 
Larmor frequency. On the other hand, for interactions that do not conserve spin, 
such as the spin-orbit interaction caused by the dipole coupling of the nuclear spins, 
a shift may occur. Normally this is expected to be very small, of the order of the 
line width. The NMR data published in connection with the experimental discovery 
of the superfluid phases was therefore a major surprise since it was found that 
although the resonance was still very sharp, it occurred at frequencies substantially 
higher than Lω . 
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The solution to this puzzling fact was immediately found by Leggett, who showed 
that the NMR shifts are a consequence of the “spontaneously broken spin-orbit 
symmetry” of the spin-triplet p-wave state. As explained earlier, the meaning of 
this concept is that the preferred directions in spin and orbital space are long-range 
ordered, as illustrated for a simpler model in Fig. 1d and 1e. The tiny dipole 
interaction may take advantage of this situation; the macroscopic quantum 
coherence of the condensate raises the dipole coupling to macroscopic importance 
– the dipoles are aligned in the same direction and their moments add up 
coherently. In this way Leggett was first able to calculate the general NMR 
response of a spin-triplet p-wave condensate. In particular in the A-phase the 
transverse NMR frequency tω  is given by 

)(222 TALt Ω+= ωω  

where  is proportional to the dipole coupling constant and depends on 
temperature but not on . Later, Leggett worked out the complete theory of the 
spin dynamics, whose predictions were experimentally confirmed in every detail. 
One of the predictions that were confirmed concerned “longitudinal” resonant 
NMR absorption in both the A and the B phase of energy from a high-frequency 
field oriented parallel with rather than perpendicular to the static field. In the A 
phase the resonant frequency of this longitudinal oscillation occurs at 

)(2 TAΩ
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where  is the same frequency that appears in the expression for the 
transverse frequency. 

)(TAΩ

Leggett identified the ABM state as a candidate to describe the A phase of 
superfluid 3He, but noted that the BW state had been shown to have the lower 
energy. This, however, had only been proven within “weak-coupling” theory. After 
Leggett’s prediction it became necessary to consider “strong-coupling” effects. The 
attractive interaction that is responsible for the pair formation in liquid helium is 
due to to the liquid itself, unlike (conventional) superconductors, where the pairing 
interaction between electrons is mediated by the lattice. P.W. Anderson and W. 
Brinkman showed that there is a conceptually simple effect that can explain the 
stabilisation of the ABM state over the BW state. It is based on a feedback 
mechanism: the pair correlations in the condensed state change the pairing 
interaction between the 3He quasiparticles in a manner that depends on the state 
itself. As a specific interaction mechanism, Anderson and Brinkman considered 
spin fluctuations and found that a stabilisation of the state first proposed by 
Anderson and Morel is possible (hence the initials of all three authors are used to 
describe this state – the ABM state). This only happens at somewhat elevated 
pressures, when the spin fluctuations become more pronounced. This left room for 
the B phase to be identified with the BW state, which was soon done. Finally, V. 
Ambegaokar and N.D. Mermin identified the A1 phase, which appears at higher 
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magnetic fields, with a state where only one of the spin states (↑↑) and (↓↓) is 
involved. 

 

 
 

Figure 5. Vortex lines in a superfluid are analogous to the flux lines that occur in a type-II 
superconductor when it is placed in a magnetic field (Cf. Fig. 4). The picture illlustrates 
vortex lines in rotating superfluid 3He, where the vortex structure is particularily rich. The 
vortex lines are shown in yellow, and the circulating flow around them is indicated by 
arrows. 

 

Importance 

The Ginzburg-Landau (GL) theory has been important in many fields of physics, 
including particle physics, where it is used in string theory. Today, the GL theory is 
extensively used to describe superconductive properties that are important in 
practical applications. This theory is able to describe, for example, spatially varying 
superconducting order, superconductivity in strong magnetic fields and fluctuating 
– time-dependent – superconducting order. 

Abrikosov’s theory of superconductors in a magnetic field created a new field of 
physics – the study of type-II superconductors. After the discovery in 1986 of the 
ceramic “high-temperature” superconductors, which are extreme type-II 
superconductors, by Gerd Bednorz and Alex Müller (Nobel Prize 1987) research to 
understand and use these new materials has become a very large activity. The 
vortex/flux lines discovered by Abrikosov are very important for the properties of 
these materials – the term “vortex matter” is used. 

The work of Leggett was crucial for understanding the order parameter structure in 
the superfluid phases of 3He. His discovery that several simultaneously broken 
symmetries can appear in condensed matter is, however, of more general 
importance for understanding complex phase transitions in other fields as well, like 
liquid crystal physics, particle physics and cosmology. 
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