Additional background material on the Nobel Prize in Physics 1998

The Royal Swedish Academy of Sciences has decided to award the 1998 Nobel
Prize in Physics jointly to

Professor ROBERT B. LAUGHLIN, Stanford University, Stanford, CA, USA

Professor HORST L. STORMER, Columbia University, New York, NY and
Bell Labs, Lucent Technologies, Murray Hill, NJ, USA

Professor DANIEL C. TSUI, Princeton University, Princeton, NJ, USA

for their discovery of a new form of quantum fluid with fractionally charged
excitations.

This additional background material is written mainly for physicists.

The experimental discovery of the fractional quantum Hall effect, by Horst L.
Stormer and Daniel C. Tsui, implied the existence of a previously unknown
kind of collective behaviour of electrons. It showed that the physics of
electrons in strong magnetic fields is far richer than anyone could have
anticipated. The subsequent theoretical explanation of the phenomenon by
Robert B. Laughlin, in terms of a new type of quantum fluid, started a major
and still active trend in theoretical condensed matter physics. It has had
implications also for other fields. The work of Laughlin, Stormer and Tsui has
lead to a breakthrough in our understanding of macroscopic quantum effects
and to the emergence of an extremely rich set of phenomena with deep and
truly fundamental theoretical implications.

Historical background

The Hall effect was discovered already in 1879 by the American Edwin Hall,
then a graduate student at Johns Hopkins University in Maryland. He found
that a voltage — the Hall voltage — appears across a thin sheet of a conducting
material when an electrical current is sent along the sheet in the presence of a
perpendicular magnetic field. Normally, the Hall voltage as well as the Hall
resistance (the ratio between Hall voltage and current) is proportional to the
magnetic field strength. Since it is also proportional to the density of charge
carriers, the Hall effect offers a convenient method for measuring charge
carrier densities in various materials. The method is routinely used in physics
laboratories today.

The laws of quantum physics alter the Hall effect significantly at low
temperatures if the charge carriers are confined to moving in a plane, for
instance along a two-dimensional internal surface of a layered semiconductor
material. Through recent remarkable technological achievements, such
structures with sufficiently pure and well defined interfaces of essentially
atomic thickness and showing these quantum effects, can now be fabricated.



What we now call the integer quantum Hall effect was discovered by Klaus
von Klitzing in the beginning of 1980 and rendered him the Nobel Prize in
Physics 1985. His effect shows up as plateaus in the Hall resistance traced as a
function of magnetic field (or particle density) with resistance values extremely
close to (h/e2)/f Here the so called filling factor, £, is an integer number, while
e and A are fundamental constants of nature — the elementary charge of the
electron and Planck’s constant. The filling factor is determined by the electron
density and the magnetic flux density. It can most easily be defined as the ratio
f=N/Ng between the number of electrons N and the number of magnetic flux
quanta No=@/®, . Here @ is the magnetic flux through the plane and @,=h/e
=4.1-10-15 Vs is the magnetic flux quantum (a tiny amount of flux indeed; the
earth’s weak magnetic field of 0.03 millitesla corresponds to almost a million
flux quanta per cm?2). When fis an integer the electrons completely fill a
corresponding number of the degenerate energy levels (Landau levels) formed
in a two-dimensional electron gas under the influence of a magnetic field.
Energy dissipation is in this situation associated with excitations over an
energy gap typically corresponding to a temperature of 100 kelvin. If the filling
factor is a fraction, f=1/3 for instance, there is no energy gap in the independent
electron model that defines the Landau levels. The gap of a few kelvin that is
important for the fractional quantum Hall effect, to be described below, is
caused by a strongly correlated motion of electrons and is induced by the
magnetic field and the repulsive Coulomb interaction between the electrons.

Discovery of an anomalous quantum Hall effect

A couple of years after the discovery of the integer effect, Horst L. Stormer and
Daniel C. Tsui of AT&T Bell Laboratories at Murray Hill, New Jersey (now
part of Lucent Technologies), were studying the Hall effect using very high
quality gallium arsenide-based samples provided by A. C. Gossard, now at the
University of California at Santa Barbara. The purity of the samples was so
high that the electrons could move ballistically, i.e. without scattering against
impurity atoms, over comparatively long distances. To achieve this, the
semiconductor sample had to be “modulation”-doped with doping atoms in
another layer than the one where the conduction takes place. The molecular
beam epitaxy technique that Gossard used so successfully had been developed
by A. Cho and others. The large scattering lengths can be achieved at low
temperatures and, thus, the experiments had to be performed at or below 1
kelvin and at very high magnetic field strengths. Fields of up to about 20 tesla,
i.e. close to one million times the earths’s magnetic field, were used in the
original experiments. The experiments discovered Hall plateaus at high
magnetic field strengths corresponding to a fractional value of the filling factor
/- In their first publication they demonstrated a plateau at f/=1/3 . They also
found some indications of a plateau at 2/3, which — by particle-hole symmetry
in the lowest Landau level — can be viewed as corresponding to a //3 filling
factor for holes.



The discovery of this “anomalous® quantum Hall effect took the condensed
matter community completely by surprise. No-one had anticipated that a
fractionally filled Landau level had any particularly interesting properties.
Stormer and Tsui were fully aware of the fact that, in contrast to the integer
effect, their fractional quantum Hall effect could not be explained within a
model ignoring the interactions between electrons. They supposed that the
arguments used to understand the integer effect were not applicable. Still, they
observed that if they for some reason were applicable anyway, they implied the
existence of quasiparticles carrying fractional charge, for instance e¢/3 if /=1/3.
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Graph showing the results of the original experiment where the fractional
quantum Hall effect was discovered for filling factor f=1/3, around which the
Hall resistance has a plateau at low temperatures. In later experiments well
defined plateaus appeared also at many other filling factors, accompanied by
much sharper minima in the Ohmic resistance than shown for the //3 case in the
lower panel here (see figure in the press release at http://www.nobel.se/
announcement-98/physics98.html).



Laughlin’s wavefunction - a theorist’s four-de-force

The astonishing discovery of the fractional quantum Hall effect seemed
completely at odds with what was understood about the integer effect. At the time
it posed a real challenge to theorists. Little progress was made until Robert B.
Laughlin, then at Bell Labs, came up with a totally unexpected theoretical
explanation. It has turned out to be the corner stone for much of the subsequent
developments with important implications also outside this field. Laughlin
showed that the electron system condenses into a new type of quantum liquid
when its density corresponds to “simple® fractional filling factors of the form f=1/
m, where m is an odd integer; /=1/3 or 1/5 for example. He even proposed an
explicit many-electron wave function for describing the ground state of this
quantum liquid of interacting electrons. This is remarkable since in previously
discovered macroscopic quantum phenomena, such as superconductivity, a
microscopic understanding on the wave function level was reached only after a
long period of steady progress gained by phenomenological approaches. Laughlin
also showed that an energy gap separates the excited states from the ground state
and that they contain “quasiparticles™ of fractional charge +e/m. This implies that
the Hall resistance becomes exactly quantized to m times A/e?.

To further discuss Laughlin’s novel ideas it is convenient to denote the position
(x,;) of the j:th electron in a two-dimensional plane by a complex number z,= x;-
iy;. Then, aside from an unimportant exponential factor, the wave function for N
electrons can be written as a simple product over all differences between particle
positions (z;- zy),
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Laughlin arrived at this form of the wave function guided by the theory of 4He,
which involves correlated many-particle wave functions (Jastrow functions).
Starting from a variational Ansatz, he was able to identify a number of constraints
and eliminate most of the variational freedom except for the value of m. It turns
out, however, that this parameter can be determined by minimizing the ground
state energy corresponding to the trial wave function (1). Laughlin discovered a
useful and beautiful analogy between the interacting electrons of the fractional
quantum Hall system and a one-component classical plasma of particles
interacting with a logarithmic potential. This classical system is well known and,
although certainly not trivial, a number of numerical schemes are available for
calculating its energy. By using a plasma analogy, Laughlin was therefore able to
calculate the energy of his proposed ground state. He found that it could be
minimized by choosing the parameter m to be related to the electron density, and
hence, the filling factor as /=1/m. He also recognized that m has to be an odd
integer to ensure that the wave function changes sign upon the exchange of two
electrons, z,X z; for instance, since this is required for particles like electrons
which obey Fermi-Dirac statistics (fermions).

Several physicists supported Laughlin’s ideas by demonstrating that his wave
function is an excellent approximation to the exact ground state wave function.
Exact numerical calculations by Duncan Haldane and his collaborators were



particularily important in this respect. Since the complexity of such calculations
increases very rapidly with the number of electrons, Haldane could only study
systems of a few electrons. Still, by putting them on a sphere he was able to
minimize boundary effects and show that Laughlin’s wave function, when adapted
to the same geometry, accounted for all but a few per cent of the exact wave
function.

Fractionally charged quasiparticle excitations

Determining the ground state is only one of the two key ingredients of a
description of a physical system. Most properties of the system are governed by
low-energy excitations, or by states whose energies are slightly higher than the
energy of the ground state. In his seminal 1983 paper Laughlin showed that the
low-energy excitations at filling factor /=1/m are rather special: in addition to
being separated from the ground state by a finite energy gap they contain
quasiparticles carrying fractional charge +e/m.
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Views of three many-electron states following MacDonald (see under
Further reading). In these sketches crosses represent zeros of the many-
electron wave functions as a function of one coordinate, z; say, and dots
represent the positions of the other electrons. (A) A full Landau-level
state in which the number of zeros equals the number of electrons (f=1).
(B) A condensed f=1/3 quantum fluid state in which three zeroes are
bound to the positions of each electron. (C) A state with a single zero, that
is, a single quasi-particle excitation which is bound to a maximum (if
hole-like ) or minimum (if electron-like) in the disorder potential rather
than to other electrons.

In this context it is useful to recall Bertrand Halperin’s early interpretation of the
significance of Laughlin’s wave function. By using Laughlin’s plasma analogy
mentioned above, Halperin concluded that the many-electron wave function must
have a finite density of zeros equal to the density of magnetic flux quanta in the




external magnetic field. With this picture in mind, one can consider the N
interacting electrons described by Laughlin’s wave function (1), freeze the
positions of particles number 2 through N, and view ¥, as a single-electron wave
function for the “representative* particle number one. One finds immediately that
this particle indeed does see a finite density of points where the wave function
goes to zero. In fact each particle sees m zeros (or vortices) located at the positions
of the other particles. One may say that there are m zeros (or vortices) bound to
each particle. This binding constitutes a fundamental “ordering* in the fractional
quantum Hall effect and plays the role of an order parameter. We shall briefly
return to this point below.

Laughlin argued that the elementary excitations from his ground state amounts to
creating extra vortices. Imagine, for instance, that we remove an electron (of
integral charge) from the system. The m vortices “left over” then unbind in
Laughlin’s picture, each “quasiparticle carrying a charge of minus //m:th of the
integral charge that was removed. Similarily, if an ordinary electron is added to
Laughlin’s liquid it is immediately split up into an odd number of quasiparticles,
each carrying the same fraction of the electron’s charge. Since the electrons are
optimally correlated in the ground state, reducing the repulsive Coulomb
interaction to a minimum, an addition or a subtraction of a single electron or flux
quantum disturbs this order at a considerable energy cost. For this reason, the f=1/
m quantum states represent condensed many-particle ground states. Since the
electron positions are not fixed, as in a solid, the Laughlin state is a new type of
quantum liquid. It follows from the arguments above that this liquid can be
compressed only at the expense of the creation of quasiparticles, which costs
energy. This is why Laughlin’s quantum liquid is said to be incompressible,
although, of course, this is strictly true only if the liquid is squeezed gently
enough.

Direct experimental verifications of energy gap and charge fragmentation

The existence of the fractional quantum Hall effect itself, i.e. of plateaus in the
Hall resistance around filling factors like 7/3, is an indirect verification of the
theory outlined. However, the central elements of the theory have also been
directly verified by experiments: viz. there is a gap in the excitation spectrum
and excited states contain localized quasiparticle excitations of fractional
charge. Before we proceed to describe these experiments, we pause to
contemplate the crucial fact that the Hall plateaus have a finite width around
the fractional filling factor //m (otherwise, the fractional quantum Hall effect
could, of course, not have been observed). The finite-width plateaus can be
understood as being due to a trapping of the first quasiparticles created as one
goes away from //m filling by, say, changing the magnetic field. The
quasiparticles are trapped due to the residual disorder present even in very
clean materials. Being trapped, the quasiparticles can neither move nor
dissipate energy. Larger changes in magnetic field overwhelm the trapping
capacity and the plateaus disappear.



Let us first consider the direct experimental verification of the energy gap. At a
finite temperature, quasiparticles can be created in pairs carrying charge +e/m
(electron-like) and -e/m (hole-like) while maintaining overall charge neutrality.
The quasiparticles will be mobile, dissipate energy and hence contribute to the
ordinary resistance of the system. In analogy with the situation in a
superconductor, or an insulator, the energy gap A for creating pairs is the sum
of the energies it takes to create an electron-like and a hole-like quasiparticle.
The experimental value of A can be obtained from the temperature dependence
of the Ohmic resistance, which is of activated type. Early experiments, by the
group of Hiroyaki Sakaki in Japan and Klaus von Klitzing in Germany, and the
Bell Labs group, only allowed a qualitative comparison with theory. This is
because the samples were not pure enough. Disorder tends to suppress the
fractional effect, whereas it enhances the integer effect. In 1989 R. L. Willett
and J. H. English of AT&T Bell Labs in collaboration with Stérmer, Tsui, and
Gossard had access to better samples. Their experimental values of A, 5-10
kelvin or 0.5-1 meV depending on sample, agree with Laughlin’s predictions
(when trivially modified, mainly to account for the finite thickness of the two-
dimensional electron layer) to within about 20%.

In addition to quasiparticle excitations, the new quantum liquid has also
collective excitations in the form of density (and spin density) fluctuations.
These can be characterized by a wave vector k and may in the long wavelength
limit £ — 0 be thought of as a coherent superposition of quasiparticle
excitations. In the short wavelength limit k — o the density fluctuations
represent an incoherent quasiparticle excitation. Steven Girvin and Allan
MacDonald of Indiana University, together with Philip Platzman of Bell Labs
have developed a theory for these collective excitations in an analogy with
Feynman’s theory of superfluid helium. The theory, which builds on
Laughlin’s description of the ground state, predicts a finite gap in the excitation
spectrum. The value of this gap at k=0 was measured in 1993 for the /=1/3
state by Aron Pinczuk and his collaborators at Bell Labs, who used inelastic
light scattering. The agreement with theory was good. Incidentally, the gap has
a minimum at finite wave vector kg in full analogy with the Landau/Bijl/
Feynman “roton minimum”. According to the theory the magnitude diminishes
as m increases and the gap disappears at m=7 or 9, signalling an instability of
the Laughlin electron liquid with respect to the creation of an electron solid — a
Wigner lattice — with lattice constant // ky. Such phase transitions have been
observed experimentally.

The second central element in the theoretical explanation of the fractional
quantum Hall effect is the fragmentation of charge. Direct verification of the
existence of fractionally charged quasiparticles have so far been obtained by
three groups using two different methods: by Vladimir Goldman and B. Su of
the State University of New York at Stony Brook in 1995 from measurements
of resonant tunneling currents and in 1997 by groups lead by Mordehai
Heiblum of the Weizmann Institute of Science in Israel and by Christian Glattli
of the French Atomic Energy Commision in France. These two groups both
measured the shot noise in tunneling currents, which clearly showed that the
current was carried by objects with charge e/3.



The shot noise measurements were made with a very high level of precision
and represent a remarkable achievement. However, the theory of shot noise is
long since established and is well understood, which means that the results of
these experiments are rather easily interpreted. In the limit of zero temperature,
for instance, the shot noise is proportional to the current and to the charge
carried by the flowing particles. At finite temperatures the shot noise is
modified in a well known manner. The parameters needed to compare with
theory, such as the sample temperature, can be determined by independent
measurements leaving the quasiparticle charge as the only undetermined
parameter. Fitting to the theory gives the quasiparticle charge as e/3 with an
accuracy of the order of 10%.

Fermions, Bosons or ... Anyons?

In many cases progress in understanding the fractional quantum Hall effect has
been guided by analogies with another dissipationless “superfluid”, viz. helium.
4He is a liquid of bosonic particles and can Bose-Einstein condense into a
macroscopic superfluid quantum state. Electrons and the quasiparticles in the
fractional quantum Hall systems are fermions, or are they? It turns out that the
statistics in two dimensions is ambiguous. Consider a gauge transformation in
which one attaches magnetic flux tubes containing m flux quanta to each of the
electrons. The dynamics of the electrons remain unaffected because they never
see any actual magnetic field, which exists only in the places they cannot reach
(on the other electrons). But imagine exchanging two particles by slowly
moving them around each other. The quantum probability amplitude for the
system to return to its original state will contain the usual statistics phase plus
an additional term, the Berry phase, which is just what would occur in the
Aharonov-Bohm effect when a charge circles a flux tube. The extra phase is
m. If m were continuous, the statistics would interpolate continuously between
Fermi-Dirac and Bose-Einstein and we would have a physical realization of the
“fractional statistics™ discussed by the Norwegian physicists J. M. Leinaas and
J.Myrheim; instead of fermions or bosons we would have F. Wilczek’s
“anyons®.

If m is an odd integer, and if we change the underlying (“bare™) statistics of the
electrons from Fermi-Dirac to Bose-Einstein to compensate for the flux tubes,
the physics of the system remains unchanged. Hence one can describe the
physics of the fractional quantum Hall effect by hard-core “composite® bosons
which carry (fake) magnetic flux (hard-core bosons because they cannot be
allowed to be at the same place simultaneously). The mean-field theory of
these objects replace the actual local flux density by the mean density. Since
there are m physical flux quanta per electron at filling factor /=1/m, we have a
perfect cancellation between the physical flux and the average “statistical” flux.
What has happened is that in changing from Fermi-Dirac to Bose-Einstein
statistics, the electrons have “swallowed up” the external magnetic field (on the
average).



In this new “dual” boson picture a Landau-Ginzburg theory of the fractional
quantum Hall effect was formulated by Girvin and MacDonald in analogy with
the corresponding theory for superfluid helium, where the particles are bosons.
The approximate theory correctly describes the important order of the
fractional quantum Hall system, which in this picture is a subtle type of off-
diagonal long-range order. As we recall, in the original picture the order is
related to the binding of the wave function zeros (vortices) to the electrons. In
the dual picture there is a relation to the Laughlin wave function, which is well
understood and therefore one can argue that we have a good understanding of
the “meaning” of the Laughlin wave function (1) and of the fractional quantum
Hall effect itself, in the sense that we have a mean field theory that captures the
essential physics

New surprises keep emerging in a still very active field

The physics of fractional quantum Hall systems is an active field both
experimentally and theoretically. In the first few years following the original
discovery a large number of quantum Hall plateaus were found as better, higher-
purity samples became available. The additional plateaus correspond to more
complicated fractional filling factors f=p/q, where p is an even or odd integer and
¢q is an odd integer. The new plateaus were explained independently by Haldane,
Laughlin, and Halperin in terms of a “hierarchy” af fractional quantum states with
Laughlin’s I/m-states as “parent” states. An alternative generalization of the
theory of the //m-states by J. Jain from 1989 is particularily interesting; Jain
describes the fractional quantum Hall effect as the integer effetc for composite
particles where an even number of flux quanta are bound to each electron
(composite fermions).

In 1989 it was discovered that when the magnetic field is tuned so that the Hall
resistance equals the resistance quantum divided by 1/2 or 1/4, rather than by 1/3
or 1/5, new phenomena emerge. These “even-denominator* quantum liquids are
fermi liquids fundamentally different from the “odd-denominator* ones, which
further demonstrates the rich physics of electrons in strong magnetic fields.

In the last few years much interest has also focused on the role played by the
edges of fractional quantum Hall devices. The gapless edge excitations of a
fractional quantum Hall fluid are “chiral” Luttinger liquids. Chiral, beacuse in
contrast to the electrons in real one-dimensional wires, they move only in one
direction without being backscattered. This gives a very beautiful set of
connections with conformal field theory and all the activity there in recent years.
Most recently the role played by the spin of the electron in quantum Hall magnets
has been the topic of active study.

In conclusion, the experimental discovery of the fractional quantum Hall effect
and its theoretical explanation in terms of a new incompressible quantum liquid
with fractionally charged excitations has lead to a breakthrough in our
understanding of macroscopic quantum phenomena and to the emergence of an
extremely rich set of phenomena with deep and truly fundamental theoretical
implications, such as the fractionalization of the electron’s charge.
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