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The Discovery of Quasicrystals 
The Nobel Prize in Chemistry 2011 is awarded to Dan Shechtman for the discovery of 

quasicrystals. 

 

 

Background 

Solid state matter always displays substantial short-range and long-range order to various 

degrees. Short-range order is imposed by the typical local bonding requirements of chemistry. 

Even in materials such as silica glass, which are normally considered to be completely 

amorphous, substantial local order is present: Each silicon atom is tetrahedrally surrounded by 

four oxygen atoms at 1.62 Å, and the typical oxygen–oxygen separation is 2.65 Å. While it is 

possible to detect one or two more distinct structural traits in silica glass, the material lacks the 

hallmark of crystallinity: long-range order.  

 

Ever since the work of Abbé Haüy in 17841, where he showed that the periodic repetition of 

identical parallelepipeds (molécules intégrantes, now known as unit cells) can be used to 

explain the external shape of crystals, long-range order has been assumed to be inextricably 

linked to translational periodicity. Hence, the classical definition of a crystal is as follows: A 

crystal is a substance in which the constituent atoms, molecules, or ions are packed in a 

regularly ordered, repeating three-dimensional pattern.2  

 

Implicitly, this means that a crystal is infinite, and given the size of the unit cell (tens to 

hundreds of ångströms) in comparison to the size of the physical crystal (hundreds of microns), 

practically, this is not too far off the mark. The vast majority of the unit cells form the bulk of the 

crystal, and only a very small part form the surface.  

 

Real crystals are, of course, not only finite in size but also contain imperfections, and the 

borders between crystalline and amorphous are to some extent defined by the measurement 

method. A sample that appears crystalline to a local probe such as selected area electron 

diffraction may appear amorphous to powder X-ray diffraction.  

 

One of the most striking characteristics of crystals is their space-group symmetry. The 230 space 

groups were enumerated in the late 19th century independently by Fedorov3, Barlow4 and 

Schoenflies5.  Many local symmetry operations that are incompatible with translational 

symmetry may still be realized by isolated molecular assemblies. Among the rotational 

symmetries, 2-, 3-, 4- and 6-fold axes are allowed, while 5-, 7- and all higher rotations are 

disallowed. The proof is very simple, and it is instructive to consider how two parallel 4-fold or 
                                                             
1 R.J. Haüy (1784) “Essai d'une théorie sur la structure des cristaux”. 
2 International Union of Crystallography [prior to 1992] 
3 E.S. Fedorov (1891) ”Симмтрія правильныхъ системъ фигуръ” (“The symmetry of regular systems of figures”), Zapiski 
Imperatorskogo S. Petersburgskogo Mineralogichesgo Obshchestva (Proceedings of the Imperial St. Petersburg Mineralogical Society), 
2(28), pp 1-146. English translation: David and Katherine Harker, (1971) “Symmetry of Crystals”, American Crystallographic Association 
Monograph No. 7, Buffalo, N.Y. Am. Cryst. Ass.  pp 50-131. 
4 W. Barlow (1894) “Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle” (“On the 
geometrical properties of homogeneous rigid structures and their application to crystals”), Zeitschrift für Krystallographie und 
Minerologie, 23, pp 1-63. 
5A. Schoenflies (1892) Krystallsysteme und Krystallstruktur. 

http://chemistry.about.com/library/glossary/bldef500.htm
http://chemistry.about.com/od/chemistryglossary/g/moleculedef.htm
http://chemistry.about.com/od/chemistryglossary/a/iondefinition.htm
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6-fold axes of rotation generate translational symmetry, while two parallel 5-fold axes of 

rotation clearly cannot coexist (figure 1). 

Figure 1. Two 4-fold (left) or 6-fold (right) axes of rotation generate new rotational axes at the same distance of 
separation as in the original pair. Repeating the procedure yields periodicity. For the pair of 5-fold axes (centre), the 
procedure instead generates a new, shorter distance. An iterative procedure will thus fill the plane densely with 5-fold 
axes, and no periodicity will result. 
 

This proof makes it obvious that 5-fold symmetry is incompatible with translational symmetry, 

and hence with crystallinity.  

 

The discovery 

In a seminal paper published in November 19846, rapidly solidified alloys of Al with 10–14% Mn 

were shown by means of electron diffraction to possess icosahedral symmetry in combination 

with long-range order, in clear violation of the results above (figure 2). In a second paper that 

was submitted earlier, but that appeared later in print, the researchers detailed their synthetic 

procedure and proposed a model based on packing of icosahedra7.  

 

The phenomenon was rapidly christened “quasicrystallinity” by Levine and Steinhardt in a 

paper8 that appeared a mere five weeks later (24 December 1984). Clearly, the old definition of 

crystallinity was insufficient to cover this new class of ordered solids, and as a consequence, the 

definition of “crystal” given by the International Union of Crystallography was changed.   

 

While formal definitions may be more or less important to science, this one is interesting 

because it makes no attempt to define the concept of “crystal” directly, but rather provides an 

operative definition based on the diffraction pattern of the material:  By "Crystal" is meant any 

solid having an essentially discrete diffraction diagram. The discovery of quasicrystals has 

taught us humility. As pointed out in a recent review9: “We do not know when the next class of 

non-periodic exciting crystal structures will be discovered, or if there will be such a discovery at 

all.” Rather than making the mistake of again being overly restrictive, science now treats 

exclusive statements about long-range order with caution. 

 

 

                                                             
6 D. Shechtman, I. Blech, D. Gratias, J.W. Cahn (1984) “Metallic phase with long range orientational order and no translation symmetry”, 
Physical Review Letters 53(20), pp 1951-1954. 
7 D. Shechtman, I. Blech (1985) “The microstructure of rapidly solidified Al6Mn”, Metallurgical Transactions 16A, pp 1005-1012. 
8 D. Levine, R. Steinhardt (1984) “Quasicrystals: a new class of ordered structures”, Physical Review Letters 53(26), pp 2477-2480. 
9 W. Steurer, S. Deloudi (2008) “Fascinating quasicrystals”, Acta Crystallographica A 64, pp 1-11. 
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Figure 2. Electron diffraction pattern from an icosahedral quasicrystal. Note the presence of perfect pentagons 
highlighted in the diagram to the right. The linear scale between pentagons is τ, and the scale between a pentagon 
inscribed in another pentagon is τ2. One of the great challenges of quasicrystal structure work is also apparent in this 
image. The intensity distribution of the diffraction pattern varies over many orders of magnitude, even in electron 
diffraction, and measuring the crucial weak reflections in an X-ray diffraction pattern within a reasonable time frame has 
only become possible with modern area detectors that were not around at the time of discovery.  

 

While the discovery process can often be difficult to retrace, the singular nature of the discovery 

of quasicrystals makes it possible to date exactly when it was made. In the notebook from Dan 

Shechtman recording his electron microscopy session on 8 April 1982, the entry for exposure 

1725 has the comment: 10 Fold ??? (figure 3). 

 

 
 
Figure 3. The notebook of Dan Shechtman dating the discovery of quasicrystals to 8 April 1982 
(www.quasi.iastate.edu/discovery.html). 
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To make the discovery even more astounding, Shechtman found that by rotating the sample he 

could identify additional 5-fold axes as well as 3-fold and 2-fold. It became clear that the 

symmetry of his sample was not merely 5-fold but icosahedral (figure 4).  

 

Naturally, Dan Shechtman was not unaware of the fundamental crystallographic laws that 

forbid 5-fold symmetry, but a crucial component of the discovery is the superb quality of his 

electron diffraction work, providing a solid experimental underpinning of the discovery. While 

5-fold symmetry may be explained by twinning, twinning was a phenomenon with which 

Shechtman was familiar and this looked nothing like it.  

 

After the discovery, Shechtman spent a long time convincing colleagues about the veracity of his 

interpretation (local icosahedral symmetry rather than twinning), and the two original papers 

on the discovery were published more than two years later. The achievement of Dan Shechtman 

is clearly not only the discovery of quasicrystals, but the realization of the importance of this 

result and the determination to communicate it to a skeptical scientific community.  

 
Figure 4. Original electron diffraction images taken by Dan Shechtman. The angular relationship between the various 
zones examined by Shechtman shows that the sample exhibits icosahedral symmetry6. 

 

The discovery spurred a lot of debate, but also frantic activity aimed at synthesizing examples. 

Within a few years, the icosahedral quasicrystals were joined by axial quasicrystals with 

decagonal and pentagonal symmetry10,11, octagonal symmetry12, dodecagonal symmetry13 and 

enneagonal symmetry14. Furthermore, within each symmetry class of quasicrystals, different 

superspace-group symmetries are allowed and realized. Thus among the icosahedral 

quasicrystals there are two distinct classes: P-type and F-type quasicrystals, with names that 

                                                             
10 L. Bendersky (1985) “Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis”, Phys. Rev. Lett. 55, pp 
1461–1463. 
11 P.A. Bancel, P.A. Heiney (1986) “Icosahedral aluminum-transition-metal Alloys”, Phys. Rev. B33, pp 7917–7922. 
12 N. Wang, H. Chen, K.H. Kuo (1987) “Two-dimensional quasicrystal with eightfold rotational symmetry”, Phys. Rev. Lett. 59, pp 1010–
1013. 
13 T. Ishimasa, H.U. Nissen, Y. Fukano (1985) “New ordered state between crystalline and amorphous in Ni–Cr particles”, Phys. Rev. Lett. 
55, pp 511–513. 
14 S. Fischer, A. Exner, K. Zielske, J. Perlich, S. Deloudi, W. Steurer, P. Lindner, S. Förster (2011) “Collodial quasicrystals with 12-fold and 
18-fold rotational symmetry”, PNAS 108, pp 1810-1814.  
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refer to their respective centering symbols in 6-dimensional superspace. However, while 

quasicrystals allow non-crystallographic symmetry, they are not defined by it, and quasicrystals 

with rotational symmetries allowed in normal 3-dimensional space have been found. 

 

A very important factor for the successful determination of quasicrystal structure has been the 

discovery of stable quasicrystals. Stable quasicrystals may be grown to considerable size and 

exhibit the typical features of well-ordered crystalline phases. These high-quality samples were 

necessary for the detailed structural studies that have led to an understanding of quasicrystal 

structure. The first stable icosahedral quasicrystals were synthesized as early as 1987 in the 

ternary system Fe-Cu-Al15, and stable axial quasicrystals followed the year after16.  A 

breakthrough came with the discovery of a binary stable icosahedral quasicrystal in 2000, using 

Ca-Cd and Yb-Cd17. The binary system, which has less disorder, was crucial for providing the 

high-quality samples subsequently used for the detailed structural elucidation of icosahedral 

quasicrystals. 

 

What are quasicrystals? 

A quasicrystal is a material that exhibits long-range order in a diffraction experiment and yet 

does not have translational periodicity. In fact, the assumption that a crystal must be 3-

dimensionally periodic had already been challenged by the discovery of incommensurately 

modulated structures. These are crystal structures that are subject to periodic distortions with a 

period that is incompatible with that of the underlying parent lattice. The existence of 

incommensurability was inferred in the structure of cold-worked metals as early as 192718, but a 

comprehensive treatment in terms of the now-prevalent superspace approach was not 

introduced until the work of de Wolff19 and Janner and Jansen20,21,22,23.  In contrast to 

quasicrystals, these structures may however be regarded as distortions of periodic structures, 

and their point-group symmetries allow 3-dimensional periodicity. In lieu of translational 

periodicity, quasicrystals exhibit another intriguing symmetry property, namely self-similarity 

by scaling. In icosahedral and decagonal quasicrystals, the self-similarity is related to the scaling 

properties of the golden ratio τ, (√5 + 1)/2. This feature is clearly apparent in direct space 

models and diffraction patterns alike (figure 2).   

 

The superspace formalism developed to treat incommensurately modulated structures was well-

adapted to deal also with quasicrystals. Hermann24 showed that symmetries that are non-

crystallographic for 3-dimensional lattices may become crystallographic if treated in higher-

dimensional space. Icosahedral symmetry is allowed together with translational symmetry in 6-

                                                             
15 A.P. Tsai, A. Inoue, T. Masumoto (1987) “A stable quasicrystal in Al-Cu-Fe system”,  Jpn. J.  Appl. Physics 26, L1505-L1507. 
16 L.X. He, Z. Zhang, Y.K. Wu, K.H. Kuo (1988) “Stable decagonal quasicrystals with different periodicities along the tenfold axis in 
Al65Cu20Co15”,  Inst. Phys. Conf. Ser. 93 (2), Chapter 13, Conf. EUREM, pp 501–502. 
17 A.P. Tsai, J.Q. Guo, E. Abe, H. Takakura, T.J. Sato (2000) “A stable binary quasicrystal” Nature 408, pp 537-538. 
18 U. Dehlinger (1927) ”Uber die Verbreiterung der Debyelinien bei kaltbearbeiteten Metallen”, Zeitschrift für Kristallographie 65, pp 
615–631. 
19 P.M. de Wolff (1974) “The pseudo-symmetry of Modulated crystals”, Acta Crystallographica A 30, pp 777-785. 
20 A. Janner, T. Janssen (1977) “Symmetry of periodically distorted crystals”, Physical Review B15(2), pp 643–658. 
21 A. Janner, T. Janssen (1979) “Superspace groups”, Physica 99A, pp 47–76. 
22 A. Janner, T. Janssen (1980) “Symmetry of incommensurate crystal phases. I. Commensurate basic structures”, Acta 
Crystallographica A36, pp 399–408. 
23 A.Janner, T.Janssen (1980) “Symmetry of incommensurate crystal phases. II. Incommensurate basic structures”, Acta 
Crystallographica A36, pp 408–415. 
24 C.Hermann (1949) “Kristallographie in Raumen Beiliebiger Dimenzionszahl .1. Die Symmetrieoperationen”, Acta Crystallographia  
2(3) 139-145. 
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dimensional space, where each coordinate axis is perpendicular to a hyperplane spanned by the 

other five. Projection to a 3-dimensional external space is straightforward according to the 

projection matrix, 

1   τ   0   −1    τ    0 
        Μ= (τ2+1) -½   τ   0   1     τ    0  −1 . 

0   1   τ     0  −1    τ 
 

The golden ratio τ appears naturally in all manifestations of 5-fold symmetry as the relation 

between the diagonal and the edge in a regular pentagon, and it is inextricably linked to the 

Fibonacci sequence. 

 

Application of the projection matrix to the vertices of a 6-dimensional hypercube yields a 

regular icosahedron as the projection. In the 3+1–dimensional incommensurate example shown 

in figure 5, the atomic surfaces are 1-dimensional objects, while in the case of the 6-dimensional 

hyperspace needed for icosahedral quasicrystals, they are 3-dimensional objects of the 

appropriate symmetry.  

 

The natural question that quickly arose out of the discovery of quasicrystals is “Where are the 

atoms?”25 There are several ways to obtain information about the arrangements based on 

microscopy and diffraction techniques. An important limiting factor is the relative paucity of 

information in a quasicrystal diffraction pattern because many reflections are weak. It is 

particularly important to get information on the shape of the atomic surfaces in perpendicular 

space, and the reflections carrying that information are often weak. In general, the intensity 

distribution in quasicrystals covers many orders of magnitude, and only in highly perfect 

samples is it possible to measure weak reflections with any accuracy. 

 

Two different methods are generally used for modelling quasicrystals. The higher dimensional 

reciprocal-space approach has the advantage that it utilizes the full power of diffraction methods 

developed for periodic crystals over the course of a century.  

 

 An important aspect of the higher dimensional analysis is that it also yields the structures of 

classically crystalline phases that often occur at compositions close to those of quasicrystals. 

These approximant phases provide important information on the structure of the corresponding 

quasicrystals because they are expected to have similar local atomic arrangements. While 

aperiodic structures such as quasicrystals are generated for irrational cuts of hyperspace, 

periodic structures come out of rational cuts.  

 

 

 

                                                             
25 P. Bak (1986) “Icosahedral Quasicrystals: Where are the atoms?”, Phys. Rev. Lett. 56, pp 861–864. 
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Figure 5. The 3+1–dimensional space representation of the electron density in an incommensurately modulated 
structure can be used as a simplified model for the 5- (for axial cases) or 6-dimensional (for icosahedral cases) 
representation of a quasicrystal. The concept of atomic position is replaced by an atomic surface along the extra 
dimension (internal space or perpendicular space, vertical) and the intersection of that surface with real space (external 
space or parallel space, horizontal) generates the local atomic arrangement. In this example, a saw-tooth–shaped 
modulation function generates a sequence of short and long distances in the incommensurate structure (red). The two 
simplest periodic commensurate approximants represent a sequence of equal distances (blue) and a simple alternating 
sequence (black). They are generated by cuts at angles rational to the coordinate axes. The dashed line, finally, 
represents a cut that intersects the atomic surface at a point where the modulation function is indeterminate and where 
two possible local structures are available. The encircled position on the dashed line indicates the uncertain position 
where a minute fluctuation of the position of the cut will produce different local structures. In real quasicrystals, such 
fluctuations, called phasons, contribute to entropic stabilization above absolute zero.  
 
Approximants are labeled by the axial relation of the generating cut. For an icosahedral 

quasicrystal, that relation is τ:1 (or in fact τ:1, τ:1, τ:1, given the six dimensions of the hypercubic 

lattice) while the simplest cubic approximants are 1:1 and 2:1 (figure 6). 

 

 
Figure 6. Polyhedral arrangement in the a) 1:1 and b) 2:1 icosahedral quasicrystal approximants in the system Ca-Cd26. 

 

                                                             
26 C. Pay-Gomez, S. Lidin (2001) “Structure of Ca13Cd76: a novel approximant to the MCd5.7 quasicrystals”, Angewandte Chemie 40, pp 
4037-4039. 
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An important discovery that helped pave the way for the understanding of the discovery of 

quasicrystals was the construction and analysis by Penrose of his famous pentagonal tiling27. 

The pentagonal Penrose tiling (figure 7) is a self-similar pattern with 5-fold symmetry, long-

range order and no translational periodicity. de Bruijn applied the higher dimensional approach 

to Penrose tiles28, and Mackay subjected an image of the vertices of a Penrose tiling to optical 

diffraction and was able to show that it has a discrete diffraction diagram29. These early results 

were certainly instrumental in allowing Levine and Steinhardt to accomplish their remarkable 

early analysis (and resulting paper) on quasicrystals, and helped establish the credibility of the 

discovery.  

 

In the 3-dimensional direct-space method, clusters from approximant phases are packed using 

tiling models or covering models that may be random or ordered according to the rules for 

Penrose tilings. The result of this approach can be evaluated qualitatively by comparison with 

microscopy or diffraction experiments. In practice, the 3-dimensional direct-space approach 

and the 6-dimensional reciprocal-space approach are complementary and they are often used 

together. The higher dimensional approach yields numerical reliability factors that are entirely 

analogous to those for periodic structures, while the strength of the tiling models is that they are 

intuitively understandable and may be directly compared to results from microscopy. They may 

also provide some help in generating starting models for higher dimensional refinement.  

 

 
Figure 7. Pentagonal Penrose tiling. Note the local 5-fold symmetry that even in the absence of any translational 
symmetry pervades the image. Decorating the two tiles with structural motifs or, as in the experiment of Mackay29, 
simply identifying the vertices as atomic positions generates a quasiperiodic structure. 

 

The highly successful direct methods for phasing diffraction data for periodic structures are not 

directly transferrable to higher dimensional problems, but recent years have seen the 

development of novel methods that address this30,31,32. 

 
                                                             
27 R. Penrose (1974) “Role of aesthetics in pure and applied research” Bulletin of the Institute of Mathematics and Its Applications 
10:266. 
28 N.G. de Bruijn (1981) “Algebraic theory of Penrose's non-periodic tilings of the plane, I, II”, Indagationes mathematicae 43(1), pp 39–
66. 
29 A. Mackay (1982) “Crystallography and the Penrose Pattern”, Physica A114, pp 609-613. 
30 A. Yamamoto, H. Takakura (2004) “Structure Refinement of Quasicrystals”, Ferroelectrics 305, pp 223–227. 
31 A. Yamamoto, H. Takakura, T. Ozeki, A.P. Tsai, Y. Ohashi (2004) “Structure refinement of i-Al-Pd-Re quasicrystals by synchrotron 
radiation data”, J. Non-Cryst. Solids 334, pp 151–155. 
32 S. Katrych, T. Weber, M. Kobas, L. Massüger, L. Palatinus, G. Chapuis, W. Steurer (2007) “New decagonal quasicrystal in the system 
Al-Ir-Os”, J. Alloys Compd. 428, pp 164–172. 
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Refinement of quasicrystal models involves the refinement of the position and shape of the 

atomic surfaces in 5-dimensional space for axial quasicrystals and 6-dimensional space for 

icosahedral quasicrystals. A detailed model involves a high degree of complexity, which requires 

a large number of independent observations, and achieving this is challenging in quasicrystals 

because the intensity distribution typically covers many orders of magnitude. Furthermore, as is 

typical for intermetallics, most quasicrystals exhibit occupational disorder, introducing 

ambiguities in the model.     

 

These have been issues in many quasicrystal refinements. Refined structures started appearing 

in the late 1980s33 and have been continuously improving. The structural resolution in the 

analysis of decagonal quasicrystals has undergone gradual improvement to reach a level 

approaching that of periodic crystals34, and recent35 state-of-the-art structural analysis of stable 

binary icosahedral quasicrystals bridges the last gap (figures 8 and 9). 

 

 
 
Figure 8. Section perpendicular to the decagonal axis of Al-Co-Ni36.   

 

The question asked by Bak in the infancy of quasicrystal research — “Where are the atoms ?” — 

has now received a satisfactory answer. The reliability of today’s models is on par with that of 

                                                             
33 J.W. Cahn, D. Gratias, B. Mozer (1988) “A 6-D structural model for the icosahedral (Al,Si)-Mn quasicrystal”, J. Phys. Fr. 49, pp 1225–
1233. 
34 A. Cervellino, T. Haibach, W. Steurer (2002) “Quasicrystal structure analysis, a never-ending story?”, Acta Cryst. B58, pp 8–33. 
35 H. Takakura, C.P. Gomez, A. Yamamoto, M. de Boissieu, A.P. Tsai (2007) “Atomic structure of the binary icosahedral Yb-Cd 
quasicrystal”, Nature Mater. 6, pp 58–63. 
36 S. Deloudi, W. Steurer (2007) “Systematic cluster-based modeling of the phases in the stability region of decagonal Al-Co-Ni”, Philos. 
Mag. 87, pp 2727–2732. 



 

 

 
 

10 (11) 

models for conventional crystals, and this leaves science in a position where the physical 

properties of quasicrystals may be understood directly in terms of their structures. Modelling of 

quasicrystals is still challenging, given that the theoretical methods for dealing with extended 

systems rely on periodicity. Theoretical models for quaiscrystals normally treat large 

approximants that are known to have similar properties because at the moment, this is the only 

viable option.   

 

 
Figure 9. Slab from the structural model for i-YbCd5.7 showing the two distinct clusters that build the structure35.  

 
Properties of quasicrystals 

Intermetallic quasicrystals are typically hard and brittle materials with unusual transport 

properties and very low surface energies. Thermal and electronic transport in solid materials is 

normally enhanced by phonons and Bloch waves that develop as a consequence of the periodic 

nature of crystals. In quasicrystals, the absence of such collective transport modes generates 

behaviors more like those found in glasses than in normal crystals. The low surface energy of 

quasicrystals make them corrosion- and adhesion-resistant and imparts them with low friction 

coefficients.  

 

Occurrence of quasicrystals 

The first quasicrystals discovered by Dan Shechtman were synthetic intermetallics, and while 

hundreds of intermetallic systems have been shown to yield quasicrystals, so far few other types 

of systems have been reported to be quasicrystalline. The first report of quasicrystals in other 

systems was from dendrimer liquid crystals37, followed by star copolymers38 and most recently 
                                                             
37 X. Zeng et al (2004) “Supramolecular dendritic liquid quasicrystals”, Nature 428, pp 157-160.  
38 K. Hayashida et al (2007) “Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABS star polymers”, Physical Review Letters 
98, 195502. 
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as self-assemblies of nanoparticles39. Very recently, the naturally occurring quasicrystalline 

mineral icosahedrite has been identified in a sample from the Khatyrka River in Chukhotka, 

Russia40,41. 

 
 
Sven Lidin 

Professor of Inorganic Materials Chemistry, Lund University  

Member of the Nobel Committee for Chemistry 

                                                             
39 D.V. Talapin (2009) “Quasicrystalline order in self-assembled binary nanoparticle superlattices”, Nature  461, pp 964-967. 
40 L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu (2009) “Natural Quasicrystals”, Science 324, pp 1306-1309. 
41 L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu (2011) “Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal”, American Mineralogist  
96, pp 928-931. 
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